一种基于遮挡对的在线多目标跟踪方法

    公开(公告)号:CN110853078A

    公开(公告)日:2020-02-28

    申请号:CN201911047363.X

    申请日:2019-10-30

    Applicant: 同济大学

    Abstract: 本发明涉及一种基于遮挡对的在线多目标跟踪方法,包括以下步骤:初始化卡尔曼预测轨迹;按时间顺序获取图像检测结果,将当前图像检测结果与上一帧的跟踪轨迹进行匹配,判断是否匹配成功;若存在未匹配的跟踪轨迹,则计算图像检测结果与所述未匹配的跟踪轨迹的面积覆盖率,若存在最大的面积覆盖率大于设定阈值,则基于最大的面积覆盖率对应的图像检测结果生成遮挡对,存储至遮挡对列表;若存在未匹配的检测结果,则利用卡尔曼预测结果和遮挡对列表对所述未匹配的检测结果进行重识别,更新卡尔曼预测轨迹;全局更新卡尔曼预测轨迹和遮挡对。与现有技术相比,本发明具有精度高、速度快等优点。

    一种基于遮挡对的在线多目标跟踪方法

    公开(公告)号:CN110853078B

    公开(公告)日:2023-07-04

    申请号:CN201911047363.X

    申请日:2019-10-30

    Applicant: 同济大学

    Abstract: 本发明涉及一种基于遮挡对的在线多目标跟踪方法,包括以下步骤:初始化卡尔曼预测轨迹;按时间顺序获取图像检测结果,将当前图像检测结果与上一帧的跟踪轨迹进行匹配,判断是否匹配成功;若存在未匹配的跟踪轨迹,则计算图像检测结果与所述未匹配的跟踪轨迹的面积覆盖率,若存在最大的面积覆盖率大于设定阈值,则基于最大的面积覆盖率对应的图像检测结果生成遮挡对,存储至遮挡对列表;若存在未匹配的检测结果,则利用卡尔曼预测结果和遮挡对列表对所述未匹配的检测结果进行重识别,更新卡尔曼预测轨迹;全局更新卡尔曼预测轨迹和遮挡对。与现有技术相比,本发明具有精度高、速度快等优点。

Patent Agency Ranking