-
公开(公告)号:CN112147998B
公开(公告)日:2021-12-07
申请号:CN202010853744.3
申请日:2020-08-24
Applicant: 同济大学
IPC: G05D1/02
Abstract: 本发明涉及一种基于区域生长法的移动机器人路径规划方法,包括步骤:读取工作环境代价地图,在可行域内随机选择一系列坐标点;采用区域生长法,以随机选择的坐标点为中心,分别向代价地图的左上、左下、右上和右下四个方向以三角形形状生长,对可行域内的坐标点划分区域,获取划分后的区域地图,并重新计算每个区域的区域中心点坐标;根据处理结果确定移动机器人当前位置所属的区域,并确定目标点所属的区域,采用改进的A*算法规划路径;将起点坐标和终点坐标加入规划路径中;采用theta*算法对路径进行优化,获取最终优化路径。与现有技术相比,本发明可有效降低机器人跟随路径时与障碍物发生碰撞的风险。
-
公开(公告)号:CN112147998A
公开(公告)日:2020-12-29
申请号:CN202010853744.3
申请日:2020-08-24
Applicant: 同济大学
IPC: G05D1/02
Abstract: 本发明涉及一种基于区域生长法的移动机器人路径规划方法,包括步骤:读取工作环境代价地图,在可行域内随机选择一系列坐标点;采用区域生长法,以随机选择的坐标点为中心,分别向代价地图的左上、左下、右上和右下四个方向以三角形形状生长,对可行域内的坐标点划分区域,获取划分后的区域地图,并重新计算每个区域的区域中心点坐标;根据处理结果确定移动机器人当前位置所属的区域,并确定目标点所属的区域,采用改进的A*算法规划路径;将起点坐标和终点坐标加入规划路径中;采用theta*算法对路径进行优化,获取最终优化路径。与现有技术相比,本发明可有效降低机器人跟随路径时与障碍物发生碰撞的风险。
-
公开(公告)号:CN112987735B
公开(公告)日:2022-06-14
申请号:CN202110206299.6
申请日:2021-02-24
Applicant: 同济大学
IPC: G05D1/02
Abstract: 本发明涉及一种基于Delaunay三角形的移动机器人安全路径规划方法,提取工作环境的全局代价地图可行域的轮廓,按照设定的窗口尺寸和步长在地图内滑动窗口,计算窗口覆盖区域的分形维度;根据分形维度得到每个窗口内初始点的位置分布;以所有窗口内初始点为顶点构建Delaunay三角形网;遍历三角形网,计算每个三角形的重心,以所有三角形的重心为顶点再次构建Delaunay三角形网;遍历新生成的三角形网,剔除位于障碍物内的顶点和通过障碍物的边,将剩余顶点、边及其连接关系构成路径网;在路径网内搜索从起点至终点的一条路径;逐渐收缩路径,直至收缩前后路径相同,获取最优路径。本发明规划的路径安全可靠,且极大地提高路径搜索和剪枝的效率。
-
公开(公告)号:CN112987735A
公开(公告)日:2021-06-18
申请号:CN202110206299.6
申请日:2021-02-24
Applicant: 同济大学
IPC: G05D1/02
Abstract: 本发明涉及一种基于Delaunay三角形的移动机器人安全路径规划方法,提取工作环境的全局代价地图可行域的轮廓,按照设定的窗口尺寸和步长在地图内滑动窗口,计算窗口覆盖区域的分形维度;根据分形维度得到每个窗口内初始点的位置分布;以所有窗口内初始点为顶点构建Delaunay三角形网;遍历三角形网,计算每个三角形的重心,以所有三角形的重心为顶点再次构建Delaunay三角形网;遍历新生成的三角形网,剔除位于障碍物内的顶点和通过障碍物的边,将剩余顶点、边及其连接关系构成路径网;在路径网内搜索从起点至终点的一条路径;逐渐收缩路径,直至收缩前后路径相同,获取最优路径。本发明规划的路径安全可靠,且极大地提高路径搜索和剪枝的效率。
-
-
-