-
公开(公告)号:CN111242015B
公开(公告)日:2023-05-02
申请号:CN202010026768.1
申请日:2020-01-10
Applicant: 同济大学
IPC: G06V20/40 , G06V20/58 , G06V10/25 , G06V10/44 , G06V10/774 , G06V10/764 , G06V10/82 , G06N3/0464 , G06N3/08
Abstract: 本发明涉及一种基于运动轮廓语义图预测行车危险场景的方法,包括以下步骤:步骤S1:获取驾驶视频,分割感兴趣区域;步骤S2:将感兴趣区域使用目标检测算法来检测交通对象并生成运动轮廓语义图;步骤S3:统计运动数据,加速度阈值,将运动轮廓语义图划分为高风险事件或正常事件;步骤S4:输入到随机森林分类器,根据特征重要性进行排序获得重要运动学特征;步骤S5:构建多模态深度神经网络模型;步骤S6:获得待检测驾驶视频的运动轮廓语义图和重要运动学特征并输入至多模态深度神经网络模型,预测行车是否具有风险,若有风险则向驾驶员报警。与现有技术相比,本发明具有提高行车危险场景的预测准确度、减少测量波动等优点。
-
公开(公告)号:CN111242015A
公开(公告)日:2020-06-05
申请号:CN202010026768.1
申请日:2020-01-10
Applicant: 同济大学
Abstract: 本发明涉及一种基于运动轮廓语义图预测行车危险场景的方法,包括以下步骤:步骤S1:获取驾驶视频,分割感兴趣区域;步骤S2:将感兴趣区域使用目标检测算法来检测交通对象并生成运动轮廓语义图;步骤S3:统计运动数据,加速度阈值,将运动轮廓语义图划分为高风险事件或正常事件;步骤S4:输入到随机森林分类器,根据特征重要性进行排序获得重要运动学特征;步骤S5:构建多模态深度神经网络模型;步骤S6:获得待检测驾驶视频的运动轮廓语义图和重要运动学特征并输入至多模态深度神经网络模型,预测行车是否具有风险,若有风险则向驾驶员报警。与现有技术相比,本发明具有提高行车危险场景的预测准确度、减少测量波动等优点。
-