-
公开(公告)号:CN109886312B
公开(公告)日:2023-06-06
申请号:CN201910079277.0
申请日:2019-01-28
Applicant: 同济大学
IPC: G06V20/54 , G06V10/774 , G06V10/764 , G06V10/82 , G06N3/0464
Abstract: 本发明涉及一种基于多层特征融合神经网络模型的桥梁车辆车轮检测方法,包括以下步骤:1)构建基于多层特征融合的深度学习神经网络模型;2)利用训练样本数据集对模型进行训练;3)对桥梁上拍摄的待检测图像进行图像增强的预处理操作;4)将预处理后的图像输入模型中,得到具有车轮车辆类别坐标标定的输出图像;5)利用重叠率度量方法,将图像中检测到的车轮与对应车辆进行匹配。与现有技术相比,本发明具有提高了检测的精度,增强了实时性,降低漏检概率等优点,本发明在实现车辆目标检测的同时也实现了车轮的检测,并自动将同一图像上的车辆与车轮匹配。
-
公开(公告)号:CN110018524B
公开(公告)日:2020-12-04
申请号:CN201910077811.4
申请日:2019-01-28
Applicant: 同济大学
Abstract: 本发明涉及计算机视觉领域,采用深度学习框架,具体涉及一种基于视觉—属性的X射线安检违禁品识别方法,包括以下步骤:1)采集标注训练样本,获取原始的单通道16位高、低能X射线灰度图,经过基于视觉‑属性的预处理,得到16位三通道彩色图像作为数据集,用于模型训练和测试;2)将训练集图像输入网络中进行训练:使用darknet网络从输入图像中提取特征,输出特征图谱;采用yolo层在多个尺度对特征图谱进行边界框预测。经过训练,该模型支持对已标注的12类违禁品进行识别;3)将测试集图像输入模型中进行测试,输出识别结果,并在输入图像上标记违禁品显示;根据IoU和R‑P曲线计算得到mAP。与现有技术相比,本发明具有高准确性、高智能化、高通配性等优点。
-
公开(公告)号:CN110018524A
公开(公告)日:2019-07-16
申请号:CN201910077811.4
申请日:2019-01-28
Applicant: 同济大学
Abstract: 本发明涉及计算机视觉领域,采用深度学习框架,具体涉及一种基于视觉—属性的X射线安检违禁品识别方法,包括以下步骤:1)采集标注训练样本,获取原始的单通道16位高、低能X射线灰度图,经过基于视觉-属性的预处理,得到16位三通道彩色图像作为数据集,用于模型训练和测试;2)将训练集图像输入网络中进行训练:使用darknet网络从输入图像中提取特征,输出特征图谱;采用yolo层在多个尺度对特征图谱进行边界框预测。经过训练,该模型支持对已标注的12类违禁品进行识别;3)将测试集图像输入模型中进行测试,输出识别结果,并在输入图像上标记违禁品显示;根据IoU和R-P曲线计算得到mAP。与现有技术相比,本发明具有高准确性、高智能化、高通配性等优点。
-
公开(公告)号:CN109886312A
公开(公告)日:2019-06-14
申请号:CN201910079277.0
申请日:2019-01-28
Applicant: 同济大学
Abstract: 本发明涉及一种基于多层特征融合神经网络模型的桥梁车辆车轮检测方法,包括以下步骤:1)构建基于多层特征融合的深度学习神经网络模型;2)利用训练样本数据集对模型进行训练;3)对桥梁上拍摄的待检测图像进行图像增强的预处理操作;4)将预处理后的图像输入模型中,得到具有车轮车辆类别坐标标定的输出图像;5)利用重叠率度量方法,将图像中检测到的车轮与对应车辆进行匹配。与现有技术相比,本发明具有提高了检测的精度,增强了实时性,降低漏检概率等优点,本发明在实现车辆目标检测的同时也实现了车轮的检测,并自动将同一图像上的车辆与车轮匹配。
-
-
-