-
公开(公告)号:CN115392438B
公开(公告)日:2023-07-07
申请号:CN202211114004.3
申请日:2022-09-14
Applicant: 吉林建筑大学
Abstract: 本申请提供一种基于多Agent环境的深度强化学习算法、设备和存储介质,涉及深度强化学习算法技术领域;通过步骤S101、利用Agent中的目标网络,基于初始状态信息和动作信息,确定时间差分;步骤S102、根据预设的遮盖率,对初始状态信息进行随机遮盖,得到目标状态信息,利用Agent中的预测网络,以及时间差分,确定误差值;步骤S103:基于误差值,以及自适应修改参数,对Agent中的预测网络和目标网络各自对应的加权值进行更新;步骤S104:重复步骤S102和步骤S103预设次数,确定目标加权值,从而确定目标深度强化学习模型。具有保证了样本学习效率,并通过自适应修改参数对深度强化学习模型中的Agent进行迭代更新,以提高收敛速度的效果。
-
公开(公告)号:CN115392438A
公开(公告)日:2022-11-25
申请号:CN202211114004.3
申请日:2022-09-14
Applicant: 吉林建筑大学
Abstract: 本申请提供一种基于多Agent环境的深度强化学习算法、设备和存储介质,涉及深度强化学习算法技术领域;通过步骤S101、利用Agent中的目标网络,基于初始状态信息和动作信息,确定时间差分;步骤S102、根据预设的遮盖率,对初始状态信息进行随机遮盖,得到目标状态信息,利用Agent中的预测网络,以及时间差分,确定误差值;步骤S103:基于误差值,以及自适应修改参数,对Agent中的预测网络和目标网络各自对应的加权值进行更新;步骤S104:重复步骤S102和步骤S103预设次数,确定目标加权值,从而确定目标深度强化学习模型。具有保证了样本学习效率,并通过自适应修改参数对深度强化学习模型中的Agent进行迭代更新,以提高收敛速度的效果。
-