一种基于深度学习和特征融合的皮肤病变图像分割方法

    公开(公告)号:CN115311230A

    公开(公告)日:2022-11-08

    申请号:CN202210941767.9

    申请日:2022-08-08

    Abstract: 本发明提供了一种基于深度学习和特征融合的皮肤病变图像分割方法,建立使用了编码器‑解码器结构的用于皮肤病变图像分割的模型,在模型的特征编码路径上使用EfficientNet进行了特征的学习,在特征解码路径上使用密集特征融合方法增强解码器的解码能力,并且采用了门控完全特征融合模块来提升特征融合的质量,产生解码后的特征图,解码器在最后产生输入图像的分割结果,完成皮肤病变图像的分割处理。本发明使用了更为先进的EfficientNet作为模型的编码器,使得本申请模型编码器的参数数量减少而且特征学习能力增强。通过门控机制增强了有用的编码信息向解码路径的传递,抑制了无用的特征信息所带来的干扰,提升了模型的特征融合能力。

Patent Agency Ranking