-
公开(公告)号:CN114663399B
公开(公告)日:2025-01-10
申请号:CN202210290763.9
申请日:2022-03-23
Applicant: 吉林大学
Abstract: 本发明公开了一种基于改进时空融合模型的积雪日变化监测方法,属于卫星遥感图像处理与应用的技术领域。本发明的目的是解决现有积雪产品空间分辨率较低,无法准确获取降雪和融雪等变化的细节问题。本发明采用2幅Landsat8卫星遥感影像和17幅MOD09GA光谱反射率影像作为数据源,使用STDFA时空融合模型获得初步的逐日时空融合影像,由于STDFA模型的时空融合结果存在光谱失真,本发明提出使用Matching‑Pix2pixGAN网络改善STDFA融合模型得到的时空融合结果,最终得到无光谱失真的逐日的时空融合结果,并提取最终时空融合结果的NDSI指数实现对积雪的识别,从而实现连续16天的积雪日变化监测。本发明方法能准确地实现积雪日变化监测,捕捉降雪和融雪的变化细节,为融雪径流分析、农业灌溉及生态环境保护提供可靠的分析数据。
-
公开(公告)号:CN111582194B
公开(公告)日:2022-03-29
申请号:CN202010395467.6
申请日:2020-05-12
Applicant: 吉林大学
Abstract: 本发明公开了一种基于多特征LSTM网络的多时相高分辨率遥感影像建筑物提取方法,属于卫星遥感图像处理与应用的技术领域。目的是解决现有方法建筑物提取结果准确率低、错分率高、边界模糊等问题。本发明采用多幅多时相高分二号遥感图像作为数据源,使用基于HSI彩色变换的方法提取建筑物光谱特征、基于图分割与条件随机场后处理相结合的方法提取建筑物的形状特征、基于Gabor小波变换的方法提取建筑物的纹理信息特征和基于DSBI指数的方法提取建筑物的指数特征,将提取的多时相建筑物的光谱、形状、纹理及指数特征组成了一个拥有60个特征波段的建筑物特征集,并将制作的建筑物样本与标签送入LSTM网络中获得建筑物粗提取结果,经过形态学处理后得到最终结果。
-
公开(公告)号:CN110287944B
公开(公告)日:2022-07-01
申请号:CN201910597394.6
申请日:2019-07-04
Applicant: 吉林大学
IPC: G06V20/17 , G06V10/46 , G06V10/764 , G06V10/56 , G06V10/774 , G06V10/82 , G06K9/62 , G06N3/04 , G06N3/08
Abstract: 本发明公开了一种基于深度学习的多光谱遥感影像的农作物虫害监测方法,属于卫星遥感图像处理与应用的技术领域。本发明的目的是解决现有方法对农作物虫害监测的时效性差,单一指数光谱信息不稳定,高光谱无人机数据获取难等问题。本发明采用10组特征波段光谱的组合,构建出一个LSTM长短期记忆网络,并通过深度学习的方法训练出能够对遥感影像中的农作物虫害进行分类的模型,本发明方法能自动、高效地从多光谱卫星遥感影像中识别农作物虫害灾情,为农业生产灾情预测防治、农业保险理赔等诸多领域提供一定的技术支持。
-
公开(公告)号:CN114663399A
公开(公告)日:2022-06-24
申请号:CN202210290763.9
申请日:2022-03-23
Applicant: 吉林大学
Abstract: 本发明公开了一种基于改进时空融合模型的积雪日变化监测方法,属于卫星遥感图像处理与应用的技术领域。本发明的目的是解决现有积雪产品空间分辨率较低,无法准确获取降雪和融雪等变化的细节问题。本发明采用2幅Landsat8卫星遥感影像和17幅MOD09GA光谱反射率影像作为数据源,使用STDFA时空融合模型获得初步的逐日时空融合影像,由于STDFA模型的时空融合结果存在光谱失真,本发明提出使用Matching‑Pix2pixGAN网络改善STDFA融合模型得到的时空融合结果,最终得到无光谱失真的逐日的时空融合结果,并提取最终时空融合结果的NDSI指数实现对积雪的识别,从而实现连续16天的积雪日变化监测。本发明方法能准确地实现积雪日变化监测,捕捉降雪和融雪的变化细节,为融雪径流分析、农业灌溉及生态环境保护提供可靠的分析数据。
-
公开(公告)号:CN111582194A
公开(公告)日:2020-08-25
申请号:CN202010395467.6
申请日:2020-05-12
Applicant: 吉林大学
Abstract: 本发明公开了一种基于多特征LSTM网络的多时相高分辨率遥感影像建筑物提取方法,属于卫星遥感图像处理与应用的技术领域。目的是解决现有方法建筑物提取结果准确率低、错分率高、边界模糊等问题。本发明采用多幅多时相高分二号遥感图像作为数据源,使用基于HSI彩色变换的方法提取建筑物光谱特征、基于图分割与条件随机场后处理相结合的方法提取建筑物的形状特征、基于Gabor小波变换的方法提取建筑物的纹理信息特征和基于DSBI指数的方法提取建筑物的指数特征,将提取的多时相建筑物的光谱、形状、纹理及指数特征组成了一个拥有60个特征波段的建筑物特征集,并将制作的建筑物样本与标签送入LSTM网络中获得建筑物粗提取结果,经过形态学处理后得到最终结果。
-
公开(公告)号:CN110287944A
公开(公告)日:2019-09-27
申请号:CN201910597394.6
申请日:2019-07-04
Applicant: 吉林大学
Abstract: 本发明公开了一种基于深度学习的多光谱遥感影像的农作物虫害监测方法,属于卫星遥感图像处理与应用的技术领域。本发明的目的是解决现有方法对农作物虫害监测的时效性差,单一指数光谱信息不稳定,高光谱无人机数据获取难等问题。本发明采用10组特征波段光谱的组合,构建出一个LSTM长短期记忆网络,并通过深度学习的方法训练出能够对遥感影像中的农作物虫害进行分类的模型,本发明方法能自动、高效地从多光谱卫星遥感影像中识别农作物虫害灾情,为农业生产灾情预测防治、农业保险理赔等诸多领域提供一定的技术支持。
-
公开(公告)号:CN115880586A
公开(公告)日:2023-03-31
申请号:CN202211560667.8
申请日:2022-12-07
Applicant: 吉林大学
Abstract: 本发明公开了一种基于混合特征网络的卫星遥感影像云雪检测方法,属于卫星遥感图像处理与应用的技术领域。本发明的目的是解决卫星遥感影像中云雪共存的条件下云雪检测精度低,无法准确获取雪和云分布状态细节的问题。本发明采用卫星遥感影像作为数据源,使用GLCM、LBP和SEEDS的方法提取图像的浅层特征,通过深度特征提取网络提取图像的深度热图特征,随后将浅层特征与深度热图特征融合形成混合特征,同时将混合特征送入基于混合特征的云雪检测网络中训练和验证,应用训练好的云雪检测模型最终获得云和雪的检测结果。本发明方法能在云雪共存条件下和不同空间分辨率的卫星遥感影像中准确地检测云和雪。
-
-
-
-
-
-