-
公开(公告)号:CN110165196B
公开(公告)日:2022-06-14
申请号:CN201910510261.0
申请日:2019-06-13
Applicant: 吉林大学
IPC: H01M4/36 , H01M4/505 , H01M4/525 , H01M4/60 , H01M10/0525
Abstract: 本发明涉及锂离子电池技术领域,具体是一种NCM333与ZIF‑8复合正极材料及制备方法,包括以下步骤:(1)称取一定量的LiNi1/3Co1/3Mn1/3O2(NCM333)层状材料,加入50‑80mL的无水甲醇,超声30分钟;(2)往溶液中加入二甲基咪唑,搅拌30‑120分钟,超声20‑60分钟;(3)称取六水合硝酸锌加入到上述溶液中,搅拌12‑48小时,然后用无水甲醇抽滤3次,最后将样品置于真空干燥箱中,温度为80‑100℃,烘干12‑24小时,即可得到ZIF‑8包覆的NCM333复合正极材料。本发明制得的复合三元层状正极材料首次应用于锂离子电池领域,表现出了优异的循环稳定性能和和倍率性能。
-
公开(公告)号:CN110707311A
公开(公告)日:2020-01-17
申请号:CN201911062740.7
申请日:2019-11-03
Applicant: 吉林大学
Abstract: 本发明属于锂离子电池技术领域,公开了一种高镍三元材料与纳米氧化锌复合正极材料及制备方法,称取LiNi0.8Co0.1Mn0.1O2高镍层状材料,加入无水甲醇,超声;往溶液中加入二甲基咪唑,搅拌、超声;称取六水合硝酸锌加入到步骤二的溶液中,搅拌;无水甲醇抽滤后对样品进行烘干;将干燥的样品烧结,自然冷却后得到LiNi0.8Co0.1Mn0.1O2与nano-ZnO复合正极材料。本发明制备方法经济简单,可控性强。得益于ZnO与材料表面的强相互作用,改性后的样品结构稳定性大大提升,本发明制得的复合高镍正极材料首次应用于锂离子电池领域,表现出了良好的循环稳定性能和倍率性能。
-
公开(公告)号:CN110707311B
公开(公告)日:2021-09-21
申请号:CN201911062740.7
申请日:2019-11-03
Applicant: 吉林大学
Abstract: 本发明属于锂离子电池技术领域,公开了一种高镍三元材料与纳米氧化锌复合正极材料及制备方法,称取LiNi0.8Co0.1Mn0.1O2高镍层状材料,加入无水甲醇,超声;往溶液中加入二甲基咪唑,搅拌、超声;称取六水合硝酸锌加入到步骤二的溶液中,搅拌;无水甲醇抽滤后对样品进行烘干;将干燥的样品烧结,自然冷却后得到LiNi0.8Co0.1Mn0.1O2与nano‑ZnO复合正极材料。本发明制备方法经济简单,可控性强。得益于ZnO与材料表面的强相互作用,改性后的样品结构稳定性大大提升,本发明制得的复合高镍正极材料首次应用于锂离子电池领域,表现出了良好的循环稳定性能和倍率性能。
-
公开(公告)号:CN110165196A
公开(公告)日:2019-08-23
申请号:CN201910510261.0
申请日:2019-06-13
Applicant: 吉林大学
IPC: H01M4/36 , H01M4/505 , H01M4/525 , H01M4/60 , H01M10/0525
Abstract: 本发明涉及锂离子电池技术领域,具体是一种NCM333与ZIF-8复合正极材料及制备方法,包括以下步骤:(1)称取一定量的LiNi1/3Co1/3Mn1/3O2(NCM333)层状材料,加入50-80mL的无水甲醇,超声30分钟;(2)往溶液中加入二甲基咪唑,搅拌30-120分钟,超声20-60分钟;(3)称取六水合硝酸锌加入到上述溶液中,搅拌12-48小时,然后用无水甲醇抽滤3次,最后将样品置于真空干燥箱中,温度为80-100℃,烘干12-24小时,即可得到ZIF-8包覆的NCM333复合正极材料。本发明制得的复合三元层状正极材料首次应用于锂离子电池领域,表现出了优异的循环稳定性能和和倍率性能。
-
-
-