-
公开(公告)号:CN113409351B
公开(公告)日:2022-06-24
申请号:CN202110734149.2
申请日:2021-06-30
Applicant: 吉林大学
Abstract: 本发明公开一种基于最优传输的无监督领域自适应遥感图像分割方法,首先提出一种分割准确性权重计算,基于步骤一中提出的遥感图像分割准确性权重计算方法,进行遥感图像最优样本子集选择。对步骤二获得的遥感图像最优样本子集,进行最优传输特征选择。对步骤三获得的遥感图像特征选择结果,进行无监督领域自适应图像分割。本发明保证了两个域特征的整体性,同时衡量前景区域特征要比通常的样本特征更有针对性且更适合分割样本,更加准确,分割准确性权重能够更好地适应分割图像,能够使属于同一类别的两个域的分割图像更相近,从而提高熵正则化进行分割图像特征最优传输的精确度。
-
公开(公告)号:CN113409351A
公开(公告)日:2021-09-17
申请号:CN202110734149.2
申请日:2021-06-30
Applicant: 吉林大学
Abstract: 本发明公开一种基于最优传输的无监督领域自适应遥感图像分割方法,首先提出一种分割准确性权重计算,基于步骤一中提出的遥感图像分割准确性权重计算方法,进行遥感图像最优样本子集选择。对步骤二获得的遥感图像最优样本子集,进行最优传输特征选择。对步骤三获得的遥感图像特征选择结果,进行无监督领域自适应图像分割。本发明保证了两个域特征的整体性,同时衡量前景区域特征要比通常的样本特征更有针对性且更适合分割样本,更加准确,分割准确性权重能够更好地适应分割图像,能够使属于同一类别的两个域的分割图像更相近,从而提高熵正则化进行分割图像特征最优传输的精确度。
-