-
公开(公告)号:CN110187393A
公开(公告)日:2019-08-30
申请号:CN201910448705.2
申请日:2019-05-28
Applicant: 吉林大学
Abstract: 本发明提供了一种基于广义回归神经网络的航磁补偿方法,包括:根据T-L方程数学模型和干扰产生原因,确定广义神经网络的输入输出指标因素;对标定飞行数据进行滤波处理后计算方向余弦及其导数,将输入、输出样本归一化处理,获得归一化的广义回归神经网络输入、输出向量;将预处理后的学习样本载入GRNN,采用十折交叉验证方法,循环验证,选取出最佳光滑因子、最佳输入样本和输出样本确定网络结构构建补偿模型。将标定飞行数据作为待补偿样本载入GRNN进行补偿计算,并将补偿网络的输出数据做反归一化处理,获得飞机干扰场的预测。本发明有效回避16项系数方程矩阵的病态问题,并且当标定飞行样本数据较少时,获得较好的补偿效果,实现无人机航磁干扰补偿。
-
公开(公告)号:CN110187393B
公开(公告)日:2020-08-11
申请号:CN201910448705.2
申请日:2019-05-28
Applicant: 吉林大学
Abstract: 本发明提供了一种基于广义回归神经网络的航磁补偿方法,包括:根据T‑L方程数学模型和干扰产生原因,确定广义神经网络的输入输出指标因素;对标定飞行数据进行滤波处理后计算方向余弦及其导数,将输入、输出样本归一化处理,获得归一化的广义回归神经网络输入、输出向量;将预处理后的学习样本载入GRNN,采用十折交叉验证方法,循环验证,选取出最佳光滑因子、最佳输入样本和输出样本确定网络结构构建补偿模型。将标定飞行数据作为待补偿样本载入GRNN进行补偿计算,并将补偿网络的输出数据做反归一化处理,获得飞机干扰场的预测。本发明有效回避16项系数方程矩阵的病态问题,并且当标定飞行样本数据较少时,获得较好的补偿效果,实现无人机航磁干扰补偿。
-