基于深度学习的实例级行人检测和行人重识别系统

    公开(公告)号:CN109670555B

    公开(公告)日:2023-07-07

    申请号:CN201811615544.3

    申请日:2018-12-27

    Applicant: 吉林大学

    Abstract: 本发明涉及视频监控技术领域,公开了基于深度学习的实例级行人检测和行人重识别系统,选择ResNet‑50作为CNN模型的网络结构,利用conv1到conv4_3作为stem CNN部分,给定一张输入图像,stem产生1024个通道的conv feature maps;将获得的conv feature maps输入到pedestrian proposal net中;将上述步骤得到的feature maps和proposals输入到ROI Align中,根据proposals的坐标位置在feature maps中将相应的区域池化为固定尺寸的特征图;将ROIAlign得到的固定大小的feature maps输入到Identification Net中,IdentificationNet由ResNet‑50的conv4_4值conv5_3组成,获得最终的feature maps;在ROIAlign后接入FCIS语意分割网络,对feature maps进行上采样,获得最终的实例级语意分割的结果;经过global average pooling获得2048维度的特征向量,经过Softmax分类器和线性回归获得行人的位置。本发明实现了端到端的行人实例级检测和行人再识别功能。

    基于深度学习的实例级行人检测和行人重识别系统

    公开(公告)号:CN109670555A

    公开(公告)日:2019-04-23

    申请号:CN201811615544.3

    申请日:2018-12-27

    Applicant: 吉林大学

    Abstract: 本发明涉及视频监控技术领域,公开了基于深度学习的实例级行人检测和行人重识别系统,选择ResNet-50作为CNN模型的网络结构,利用conv1到conv4_3作为stem CNN部分,给定一张输入图像,stem产生1024个通道的conv feature maps;将获得的conv feature maps输入到pedestrian proposal net中;将上述步骤得到的feature maps和proposals输入到ROI Align中,根据proposals的坐标位置在feature maps中将相应的区域池化为固定尺寸的特征图;将ROIAlign得到的固定大小的feature maps输入到Identification Net中,IdentificationNet由ResNet-50的conv4_4值conv5_3组成,获得最终的feature maps;在ROIAlign后接入FCIS语意分割网络,对feature maps进行上采样,获得最终的实例级语意分割的结果;经过global average pooling获得2048维度的特征向量,经过Softmax分类器和线性回归获得行人的位置。本发明实现了端到端的行人实例级检测和行人再识别功能。

Patent Agency Ranking