基于语言模型的电池健康状态预测方法、装置及产品

    公开(公告)号:CN119224582A

    公开(公告)日:2024-12-31

    申请号:CN202411129778.2

    申请日:2024-08-16

    Abstract: 本发明提供了一种基于语言模型的电池健康状态预测方法、装置及产品,利用上述技术方案,通过在应用侧获取目标电池的电气参数随时间变化的数据,并处理获得符合语言模型的输入特征的输入数据,通过目标语言模型的输出特征获得对应于目标电池的电池健康状态,而在训练侧则可通过电池的物理原理作为物理约束条件,对基础语言模型中预训练的模型骨干进行冻结,而对可调组件进行训练,从而获得目标语言模型,由此,利用预训练的模型骨干的泛化能力,以及物理约束的可解释性带来的泛化能力,减少了模型训练过程中对训练数据的需求量,优化建模过程,提升建模效率,从而提升电池健康状态预测的有效性。

Patent Agency Ranking