用于预测蛋白质翻译后修饰位点的深度学习方法

    公开(公告)号:CN114724630B

    公开(公告)日:2024-05-31

    申请号:CN202210406078.8

    申请日:2022-04-18

    Applicant: 厦门大学

    Abstract: 用于预测蛋白质翻译后修饰位点的深度学习方法,涉及生物信息学领域。包括:从公共数据库上收集带有蛋白质翻译后修饰位点注释的蛋白质序列数据;对收集到的蛋白质序列进行去冗余处理,并删除可信度较低的位点注释信息,得到不同PTM类型的蛋白质序列集合;构建基于深度神经网络的预测模型,提取蛋白质序列的短程耦合信息和长程耦合信息;利用蛋白质序列数据集为每种PTM类型训练一个预测模型;将训练好的预测模型部署到网上得到在线预测系统;用户通过在线预测系统输入蛋白质序列文件,选择需要预测的PTM位点类型,在线系统返回PTM位点的预测结果。可以同时预测多种PTM位点,可为生物医学研究和药物设计提供相关的蛋白质信息。

    用于预测蛋白质翻译后修饰位点的深度学习方法

    公开(公告)号:CN114724630A

    公开(公告)日:2022-07-08

    申请号:CN202210406078.8

    申请日:2022-04-18

    Applicant: 厦门大学

    Abstract: 用于预测蛋白质翻译后修饰位点的深度学习方法,涉及生物信息学领域。包括:从公共数据库上收集带有蛋白质翻译后修饰位点注释的蛋白质序列数据;对收集到的蛋白质序列进行去冗余处理,并删除可信度较低的位点注释信息,得到不同PTM类型的蛋白质序列集合;构建基于深度神经网络的预测模型,提取蛋白质序列的短程耦合信息和长程耦合信息;利用蛋白质序列数据集为每种PTM类型训练一个预测模型;将训练好的预测模型部署到网上得到在线预测系统;用户通过在线预测系统输入蛋白质序列文件,选择需要预测的PTM位点类型,在线系统返回PTM位点的预测结果。可以同时预测多种PTM位点,可为生物医学研究和药物设计提供相关的蛋白质信息。

Patent Agency Ranking