基于多任务深度学习的人脸属性识别方法

    公开(公告)号:CN106203395B

    公开(公告)日:2020-01-14

    申请号:CN201610591877.1

    申请日:2016-07-26

    Applicant: 厦门大学

    Abstract: 基于多任务深度学习的人脸属性识别方法,涉及计算机视觉中的人脸属性识别。准备图像数据集;对图像数据集中的每幅图像逐一进行人脸检测;对所有检测到的人脸进行人脸关键点检测;对检测到的人脸关键点将每幅人脸根据人脸对齐方法,对齐到标准的人脸图像上,构成人脸图像训练集;计算出训练集中的平均人脸图像;构建多任务深度卷积神经网络,把人脸图像训练集中的每幅人脸图像减去平均人脸图像后进行网络参数的训练,得卷积神经网络模型;将待识别的测试图像进行人脸检测和人脸关键点检测,并根据人脸关键点将图像中的人脸对齐到标准的人脸图像上;将标准的人脸图像减去平均人脸图像,并放到构建好的卷积神经网络模型中进行前馈运算操作,即得。

    基于混合训练的深度学习人脸验证方法

    公开(公告)号:CN106203533A

    公开(公告)日:2016-12-07

    申请号:CN201610592954.5

    申请日:2016-07-26

    Applicant: 厦门大学

    Abstract: 基于混合训练的深度学习人脸验证方法。准备人脸数据集;对每幅图像进行人脸和人脸关键点检测;对所有人脸归一化,得人脸图像训练集,再划分为训练和验证数据集,计算所有人脸图像的均值图像;将所有人脸图像都减去均值图像得均值化的训练数据集和验证数据集;训练深度卷积神经网络;对每幅人脸图像生成对应的三元组,构成三元组训练数据集和三元组验证数据集;再次训练深度卷积神经网络;对于给定待验证的两幅图像进行人脸和人脸特征点检测,并减去均值图像,输入深度卷积神经网络中,进行网络前馈操作,并提取特征;根据选定的阈值,当两幅图像提取特征之间的距离大于阈值,判定两张图像中的人脸属于同一个人,否则判定为不同人。

    基于混合训练的深度学习人脸验证方法

    公开(公告)号:CN106203533B

    公开(公告)日:2019-09-20

    申请号:CN201610592954.5

    申请日:2016-07-26

    Applicant: 厦门大学

    Abstract: 基于混合训练的深度学习人脸验证方法。准备人脸数据集;对每幅图像进行人脸和人脸关键点检测;对所有人脸归一化,得人脸图像训练集,再划分为训练和验证数据集,计算所有人脸图像的均值图像;将所有人脸图像都减去均值图像得均值化的训练数据集和验证数据集;训练深度卷积神经网络;对每幅人脸图像生成对应的三元组,构成三元组训练数据集和三元组验证数据集;再次训练深度卷积神经网络;对于给定待验证的两幅图像进行人脸和人脸特征点检测,并减去均值图像,输入深度卷积神经网络中,进行网络前馈操作,并提取特征;根据选定的阈值,当两幅图像提取特征之间的距离大于阈值,判定两张图像中的人脸属于同一个人,否则判定为不同人。

    基于多任务深度学习的人脸属性识别方法

    公开(公告)号:CN106203395A

    公开(公告)日:2016-12-07

    申请号:CN201610591877.1

    申请日:2016-07-26

    Applicant: 厦门大学

    Abstract: 基于多任务深度学习的人脸属性识别方法,涉及计算机视觉中的人脸属性识别。准备图像数据集;对图像数据集中的每幅图像逐一进行人脸检测;对所有检测到的人脸进行人脸关键点检测;对检测到的人脸关键点将每幅人脸根据人脸对齐方法,对齐到标准的人脸图像上,构成人脸图像训练集;计算出训练集中的平均人脸图像;构建多任务深度卷积神经网络,把人脸图像训练集中的每幅人脸图像减去平均人脸图像后进行网络参数的训练,得卷积神经网络模型;将待识别的测试图像进行人脸检测和人脸关键点检测,并根据人脸关键点将图像中的人脸对齐到标准的人脸图像上;将标准的人脸图像减去平均人脸图像,并放到构建好的卷积神经网络模型中进行前馈运算操作,即得。

Patent Agency Ranking