一种基于迁移学习和WiFi的行为识别方法及系统

    公开(公告)号:CN114048773B

    公开(公告)日:2024-09-10

    申请号:CN202111327197.6

    申请日:2021-11-10

    Applicant: 厦门大学

    Abstract: 本发明提出了一种基于迁移学习和WiFi的行为识别方法,包括:S1、采集移动目标所处环境在连续时刻下的CSI信号并组成CSI信号序列,并对所述CSI信号序列去噪;S2、基于行为提取算法对去噪后的所述CSI信号序列进行行为分割,并提取不同的行为信号;S3、通过短时傅里叶变换将所述行为信号转换成时频图;S4、将所述时频图输入到预训练好的神经网络中,从而识别并分类出不同的行为。通过对采集的CSI信号序列进行去噪,然后利用行为提取算法检测不同行为的起始点和结束点,将对应的有效行为信号提取出来,再将行为信号转化成时频图并导入神经网络中进行训练,这种基于小样本学习的方式识别准确率大大提高,能够有效的克服面对跨领域场景的问题。

    一种基于迁移学习和WiFi的行为识别方法及系统

    公开(公告)号:CN114048773A

    公开(公告)日:2022-02-15

    申请号:CN202111327197.6

    申请日:2021-11-10

    Applicant: 厦门大学

    Abstract: 本发明提出了一种基于迁移学习和WiFi的行为识别方法,包括:S1、采集移动目标所处环境在连续时刻下的CSI信号并组成CSI信号序列,并对所述CSI信号序列去噪;S2、基于行为提取算法对去噪后的所述CSI信号序列进行行为分割,并提取不同的行为信号;S3、通过短时傅里叶变换将所述行为信号转换成时频图;S4、将所述时频图输入到预训练好的神经网络中,从而识别并分类出不同的行为。通过对采集的CSI信号序列进行去噪,然后利用行为提取算法检测不同行为的起始点和结束点,将对应的有效行为信号提取出来,再将行为信号转化成时频图并导入神经网络中进行训练,这种基于小样本学习的方式识别准确率大大提高,能够有效的克服面对跨领域场景的问题。

Patent Agency Ranking