一种基于任务扩增的迁移攻击方法

    公开(公告)号:CN114444690B

    公开(公告)日:2024-06-07

    申请号:CN202210100372.6

    申请日:2022-01-27

    Applicant: 厦门大学

    Abstract: 一种基于任务扩增的迁移攻击方法。对于每张干净样本,迭代地生成对应的对抗样本,在每次迭代的过程中,从数据扩增和模型扩增两个方面构造攻击任务,在数据扩增方面,对图片进行随机调整大小和随机填充,在模型扩增方面,通过随机改变模型的部分结构来实现模型扩增,并且为了不影响模型的预测结果,只修改模型的反向传播过程;构造完攻击任务之后,将任务划分为支持集和查询集两个集合,然后根据元学习的核心观念,先在支持集上生成一个暂时的扰动,然后再在查询集上对这个暂时的扰动进行微调,最终的扰动更新由支持集和查询集上的梯度共同决定。能够让对抗扰动在所构造的任务上充分泛化,不会对单一的图像模式或单一的模型过拟合。

    一种基于任务扩增的迁移攻击方法

    公开(公告)号:CN114444690A

    公开(公告)日:2022-05-06

    申请号:CN202210100372.6

    申请日:2022-01-27

    Applicant: 厦门大学

    Abstract: 一种基于任务扩增的迁移攻击方法。对于每张干净样本,迭代地生成对应的对抗样本,在每次迭代的过程中,从数据扩增和模型扩增两个方面构造攻击任务,在数据扩增方面,对图片进行随机调整大小和随机填充,在模型扩增方面,通过随机改变模型的部分结构来实现模型扩增,并且为了不影响模型的预测结果,只修改模型的反向传播过程;构造完攻击任务之后,将任务划分为支持集和查询集两个集合,然后根据元学习的核心观念,先在支持集上生成一个暂时的扰动,然后再在查询集上对这个暂时的扰动进行微调,最终的扰动更新由支持集和查询集上的梯度共同决定。能够让对抗扰动在所构造的任务上充分泛化,不会对单一的图像模式或单一的模型过拟合。

Patent Agency Ranking