一种基于内部语义层次结构的词嵌入表示方法

    公开(公告)号:CN107025219B

    公开(公告)日:2019-07-26

    申请号:CN201710256916.7

    申请日:2017-04-19

    Applicant: 厦门大学

    Abstract: 一种基于内部语义层次结构的词嵌入表示方法,涉及基于深度学习的自然语言处理。使用开源工具获得输入文本中每个词语的内部层次结构:该结构类似于传统短语树结构,不同的是以字符为基本单位,并且标注每个字符在该结构中的层次位置和类别信息;根据层次结构不变性原则对上述结构进行序列化操作,得到保持词内部的层次位置、类别信息的文本序列;将双向GRU网络作用于上述序列进行嵌入表示编码,然后将前向和后向GRU网络得到的两个嵌入表示向量进行拼接,最后通过非线性变换,ReLU操作,得到词语的最终嵌入表示向量。框架结构清晰简洁、方法直观,有助于学习内涵更为丰富的词嵌入表示,更好地为后续的自然语言处理任务服务。

    一种基于内部语义层次结构的词嵌入表示方法

    公开(公告)号:CN107025219A

    公开(公告)日:2017-08-08

    申请号:CN201710256916.7

    申请日:2017-04-19

    Applicant: 厦门大学

    CPC classification number: G06F17/2795 G06F17/2785 G06N3/04

    Abstract: 一种基于内部语义层次结构的词嵌入表示方法,涉及基于深度学习的自然语言处理。使用开源工具获得输入文本中每个词语的内部层次结构:该结构类似于传统短语树结构,不同的是以字符为基本单位,并且标注每个字符在该结构中的层次位置和类别信息;根据层次结构不变性原则对上述结构进行序列化操作,得到保持词内部的层次位置、类别信息的文本序列;将双向GRU网络作用于上述序列进行嵌入表示编码,然后将前向和后向GRU网络得到的两个嵌入表示向量进行拼接,最后通过非线性变换,ReLU操作,得到词语的最终嵌入表示向量。框架结构清晰简洁、方法直观,有助于学习内涵更为丰富的词嵌入表示,更好地为后续的自然语言处理任务服务。

Patent Agency Ranking