-
公开(公告)号:CN109583357B
公开(公告)日:2022-07-08
申请号:CN201811413568.0
申请日:2018-11-23
Applicant: 厦门大学
Abstract: 本发明涉及一种改进LBP和轻量卷积神经网络级联的人脸识别方法,提供:对齐分区局部二值模式初次识别测试单元,APLBP与轻量化卷积神经网络级联的二次识别测试单元,APLBP识别测试单元,轻量化卷积神经网络并行流水线模块加速单元,计算平均识别率单元。将采集的人脸图像划分为主要区域和次要区域,对于人脸图像的主要区域与次要区域,提取中心点LBP像素特征值;通过级联的关系对APLBP识别并提取出的相似图像再加入轻量级卷积神经网络进行二次识别。充分融入了APLBP算法的速度优势和轻量化卷积神经网络的精度优势,通过对轻量化卷积神经网络的卷积层中耗时大的矩阵乘加运算使用并行模块进行加速,从而达到速度和准确率的双向提升。
-
公开(公告)号:CN109344758B
公开(公告)日:2022-07-08
申请号:CN201811118268.X
申请日:2018-09-25
Applicant: 厦门大学
IPC: G06V40/16 , G06V10/764 , G06K9/62
Abstract: 本发明涉及一种基于改进局部二值模式的人脸识别方法,拍摄人脸图片,采用人脸检测算法进行人脸检测,并进行裁剪;对得到的人脸图像,获取特征点的坐标,根据坐标对人脸图像进行处理,得到人脸的正脸图片,并分成训练集和测试集;采用基于4进制的近邻LBP算法计算对应参数;采用基于4进制的近邻LBP算法计算测试集与训练集中图片的特征值,在测试集中任意选取一张图片,并计算其特征向量与训练集中所有图片特征向量的欧氏距离,选取欧氏距离最小的训练样本作为此待测样本的识别结果,并与其标签进行比较,计算识别率,输出识别结果。本发明提出的方法能更好地反映图形的纹理特征,提高人脸识别的准确率。
-
公开(公告)号:CN113971450A
公开(公告)日:2022-01-25
申请号:CN202111203301.0
申请日:2021-10-15
Applicant: 厦门大学
Abstract: 本发明提供了一种健身房用健身数据管理系统及其使用方法,包括数据管理系统,所述数据管理系统用于集中管控服务平台的所有数据,所有数据包括使用终端数据以及后台终端数据,本发明通过将健身器材进行身份识别绑定,在使用者使用对应器材时能够对其进行记录,从而不需要管理人员进行现场管理,在健身器材损坏时,也能够根据记录查询到使用者,并进行对应的后续处理,避免器材损坏找不到追责人情况的出现,应用本技术方案可实现大大增加工作人员的工作便利,且为想要自助健身的人提供对应的指导视频,从而提高自助健身的安全性,避免因健身时器材使用错误引发的安全事故的发生。
-
公开(公告)号:CN110929566A
公开(公告)日:2020-03-27
申请号:CN201910984034.1
申请日:2019-10-16
Applicant: 厦门大学 , 福建联迪商用设备有限公司
IPC: G06K9/00
Abstract: 本发明公开了一种基于可见光和近红外双目摄像头的人脸活体检测方法,其中该方法包括:控制可见光摄像头进行人脸检测,并控制近红外摄像头处于休眠状态;通过可见光摄像头检测到可见光人脸时,唤醒近红外摄像头,并通过近红外摄像头对当前场景进行拍摄以获得近红外图像;采用预设的校准模型对可见光人脸区域进行校准,获得近红外人脸区域;如果近红外人脸区域有人脸,则将可见光人脸区域的图像与近红外人脸区域的图像进行融合;分别对可见光人脸区域的图像、近红外人脸区域的图像和融合图像进行活体判别;由此,本发明自动校准两个摄像头的人脸区域,避免在双路视频流中的重复工作,并将图像融合以辅助活体检测,从而提高活体检测的效率和可靠性。
-
公开(公告)号:CN109344758A
公开(公告)日:2019-02-15
申请号:CN201811118268.X
申请日:2018-09-25
Applicant: 厦门大学
Abstract: 本发明涉及一种基于改进局部二值模式的人脸识别方法,拍摄人脸图片,采用人脸检测算法进行人脸检测,并进行裁剪;对得到的人脸图像,获取特征点的坐标,根据坐标对人脸图像进行处理,得到人脸的正脸图片,并分成训练集和测试集;采用基于4进制的近邻LBP算法计算对应参数;采用基于4进制的近邻LBP算法计算测试集与训练集中图片的特征值,在测试集中任意选取一张图片,并计算其特征向量与训练集中所有图片特征向量的欧氏距离,选取欧氏距离最小的训练样本作为此待测样本的识别结果,并与其标签进行比较,计算识别率,输出识别结果。本发明提出的方法能更好地反映图形的纹理特征,提高人脸识别的准确率。
-
公开(公告)号:CN109583357A
公开(公告)日:2019-04-05
申请号:CN201811413568.0
申请日:2018-11-23
Applicant: 厦门大学
Abstract: 本发明涉及一种改进LBP和轻量卷积神经网络级联的人脸识别方法,提供:对齐分区局部二值模式初次识别测试单元,APLBP与轻量化卷积神经网络级联的二次识别测试单元,APLBP识别测试单元,轻量化卷积神经网络并行流水线模块加速单元,计算平均识别率单元。将采集的人脸图像划分为主要区域和次要区域,对于人脸图像的主要区域与次要区域,提取中心点LBP像素特征值;通过级联的关系对APLBP识别并提取出的相似图像再加入轻量级卷积神经网络进行二次识别。充分融入了APLBP算法的速度优势和轻量化卷积神经网络的精度优势,通过对轻量化卷积神经网络的卷积层中耗时大的矩阵乘加运算使用并行模块进行加速,从而达到速度和准确率的双向提升。
-
公开(公告)号:CN110929566B
公开(公告)日:2023-05-23
申请号:CN201910984034.1
申请日:2019-10-16
Applicant: 厦门大学 , 福建联迪商用设备有限公司
Abstract: 本发明公开了一种基于可见光和近红外双目摄像头的人脸活体检测方法,其中该方法包括:控制可见光摄像头进行人脸检测,并控制近红外摄像头处于休眠状态;通过可见光摄像头检测到可见光人脸时,唤醒近红外摄像头,并通过近红外摄像头对当前场景进行拍摄以获得近红外图像;采用预设的校准模型对可见光人脸区域进行校准,获得近红外人脸区域;如果近红外人脸区域有人脸,则将可见光人脸区域的图像与近红外人脸区域的图像进行融合;分别对可见光人脸区域的图像、近红外人脸区域的图像和融合图像进行活体判别;由此,本发明自动校准两个摄像头的人脸区域,避免在双路视频流中的重复工作,并将图像融合以辅助活体检测,从而提高活体检测的效率和可靠性。
-
-
-
-
-
-