-
公开(公告)号:CN109598227B
公开(公告)日:2022-11-11
申请号:CN201811448853.6
申请日:2018-11-28
Applicant: 厦门大学
Abstract: 一种基于深度学习的单幅图像手机源重辨识方法,涉及图像取证领域。提出一种新的图像取证方法,解决基于分类的相机溯源方法中训练集类别不足问题;基于传统数字图像指纹特征提取方法,提出利用多种自学习滤波器在单幅图像中提取手机指纹特征的方法,并解释深度神经网络对于数字图像指纹特征提取的可行性;提出一种基于全局特征融合的深度网络结构,以高效提取数字图像指纹特征;根据自学习滤波器和全局特征融合网络所提取的数字图像指纹特征,利用度量学习方法追溯拍摄该幅图像的具体手机源设备。
-
公开(公告)号:CN109598227A
公开(公告)日:2019-04-09
申请号:CN201811448853.6
申请日:2018-11-28
Applicant: 厦门大学
Abstract: 一种基于深度学习的单幅图像手机源重辨识方法,涉及图像取证领域。提出一种新的图像取证方法,解决基于分类的相机溯源方法中训练集类别不足问题;基于传统数字图像指纹特征提取方法,提出利用多种自学习滤波器在单幅图像中提取手机指纹特征的方法,并解释深度神经网络对于数字图像指纹特征提取的可行性;提出一种基于全局特征融合的深度网络结构,以高效提取数字图像指纹特征;根据自学习滤波器和全局特征融合网络所提取的数字图像指纹特征,利用度量学习方法追溯拍摄该幅图像的具体手机源设备。
-
公开(公告)号:CN109034230B
公开(公告)日:2021-03-30
申请号:CN201810785332.3
申请日:2018-07-17
Applicant: 厦门大学
Abstract: 一种基于深度学习的单幅图像相机溯源方法,涉及信息安全领域,包括以下步骤,步骤1、利用多尺度拉普拉斯滤波器提取不同尺度的高频图像,并进行初步特征提取和拼接合并;步骤2、将步骤1中拼接合并后的特征送入基于信噪比增强的特征抽取器进一步进行特征提取;步骤3、将步骤2中进一步提取的特征送入基于层级结构的串联型多任务分类模块,实现对相机品牌、相机型号或个体相机设备的识别;能够自适应地提取相机成像过程的微弱指纹特征,抑制强背景噪声,且准确率高,也可适用于对篡改图像的相机溯源和对手机拍摄图像的溯源,具有更强的鲁棒性。
-
公开(公告)号:CN109034230A
公开(公告)日:2018-12-18
申请号:CN201810785332.3
申请日:2018-07-17
Applicant: 厦门大学
CPC classification number: G06K9/6269 , G06K9/40 , G06K9/46 , G06N3/0454
Abstract: 一种基于深度学习的单幅图像相机溯源方法,涉及信息安全领域,包括以下步骤,步骤1、利用多尺度拉普拉斯滤波器提取不同尺度的高频图像,并进行初步特征提取和拼接合并;步骤2、将步骤1中拼接合并后的特征送入基于信噪比增强的特征抽取器进一步进行特征提取;步骤3、将步骤2中进一步提取的特征送入基于层级结构的串联型多任务分类模块,实现对相机品牌、相机型号或个体相机设备的识别;能够自适应地提取相机成像过程的微弱指纹特征,抑制强背景噪声,且准确率高,也可适用于对篡改图像的相机溯源和对手机拍摄图像的溯源,具有更强的鲁棒性。
-
-
-