-
公开(公告)号:CN109697726B
公开(公告)日:2020-09-18
申请号:CN201910018068.5
申请日:2019-01-09
Applicant: 厦门大学
Abstract: 一种基于事件相机的端对端目标运动估计方法,涉及计算机视觉的目标运动估计。针对传统相机对目标快速运动和环境光照变化不鲁棒的缺点,提出一种基于事件相机的端对端目标帧间运动估计深度人工神经网络。由于事件相机仅产生异步的视觉事件,而所提出的深度网络需要同步的图像帧用于输入,还提出一种异步视觉事件集到同步图像帧表示的转换。该视觉事件帧能够清晰地展现所对应运动的模式,便于所提出的深度网络对这些模式的提取和识别。所提出的深度网络包含三个主要部分:开始的卷积模块用于提取视觉事件帧上的运动特征、中间的长短时记忆模块用于加速训练与压缩特征和最后的全连接层部分用于实时地预测5自由度的目标二维帧间运动。
-
公开(公告)号:CN108734151A
公开(公告)日:2018-11-02
申请号:CN201810613931.7
申请日:2018-06-14
Applicant: 厦门大学
Abstract: 基于相关滤波以及深度孪生网络的鲁棒长程目标跟踪方法,涉及计算机视觉技术。通过将相关滤波以及深度孪生网络结合在一个统一的跟踪框架下,能够有效处理长视频中目标遮挡、消失视野等挑战。在该跟踪方法中,所提出的基于D-expert以及C-expert的专家评估机制能有效地对相关滤波以及深度孪生网络共同产生的目标候选位置进行评估筛选,得到最佳的目标跟踪结果,使用该结果来更新相关滤波跟踪器,从而有效避免了相关滤波跟踪器被错误样本更新。提出的目标跟踪方法对长视频中的各类挑战较为鲁棒,能够长时间稳定跟踪目标。
-
公开(公告)号:CN110135365B
公开(公告)日:2021-04-06
申请号:CN201910418050.4
申请日:2019-05-20
Applicant: 厦门大学
Abstract: 基于幻觉对抗网络的鲁棒目标跟踪方法,涉及计算机视觉技术。首先提出一种新的幻觉对抗网络,旨在于学习样本对间的非线性形变,并将学习到的形变施加在新目标以此来生成新的目标形变样本。为了能有效训练所提出的幻觉对抗网络,提出形变重构损失。基于离线训练的幻觉对抗网络,提出基于幻觉对抗网络的目标跟踪方法,该方法能有效缓解深度神经网络在目标跟踪过程中由于在线更新发生的过拟合问题。此外,为了能进一步提升形变迁移质量,提出选择性性变迁移方法,进一步提升了跟踪精度。提出的目标跟踪方法在当前主流目标跟踪数据集上取得了具有竞争力的结果。
-
公开(公告)号:CN112132872A
公开(公告)日:2020-12-25
申请号:CN202010982221.9
申请日:2020-09-17
Applicant: 厦门大学
Abstract: 一种针对深度相关滤波目标跟踪算法的评测方法,涉及计算机视觉技术。将基于深度相关滤波的目标跟踪算法分为五个独立的部分,即移动模型、特征提取器、相关滤波模型、相关滤波模板更新器、定位模型;并对这五个独立的部分单独进行评测,从而评测出各个部分对算法的影响大小;最后通过综合这五个部分的单独评测结果,实现对基于深度相关滤波的目标跟踪方法进行改进。所获得的评测结果能够直观的评测基于深度相关滤波的目标跟踪算法,可以进一步用于基于深度相关滤波的运动分割、特征匹配等计算机视觉领域的重要任务。在多个经典的深度相关滤波目标跟踪算法上进行实验验证,能够有效对算法进行评价,从而实现对算法性能评测与针对性提升。
-
公开(公告)号:CN110189362B
公开(公告)日:2020-12-25
申请号:CN201910452361.2
申请日:2019-05-28
Applicant: 厦门大学
Abstract: 基于多分支自编码对抗网络的高效目标跟踪方法。在有标记的离线目标跟踪数据集中收集大量目标模板和包含有目标的搜索区域样本对;使用均方误差损失,通过全监督的方式对所提出的目标概率生成器进行初步训练;引入判别器,加入对抗训练的方式共同优化目标概率生成器和判别器;给定测试视频中的第一帧,采样其标注的目标区域作为初始目标模板;给定测试帧,以当前目标长宽的N倍大小的窗口进行随机的位移来得到搜索区域;将搜索区域和目标模板输入目标概率生成器,输出得到目标概率图,选取目标概率图中最大值点的位置作为目标中心;根据目标概率图分布估计目标在当前帧的尺度;根据当前帧估计的目标区域进行目标模板更新。
-
公开(公告)号:CN108734151B
公开(公告)日:2020-04-14
申请号:CN201810613931.7
申请日:2018-06-14
Applicant: 厦门大学
Abstract: 基于相关滤波以及深度孪生网络的鲁棒长程目标跟踪方法,涉及计算机视觉技术。通过将相关滤波以及深度孪生网络结合在一个统一的跟踪框架下,能够有效处理长视频中目标遮挡、消失视野等挑战。在该跟踪方法中,所提出的基于D‑expert以及C‑expert的专家评估机制能有效地对相关滤波以及深度孪生网络共同产生的目标候选位置进行评估筛选,得到最佳的目标跟踪结果,使用该结果来更新相关滤波跟踪器,从而有效避免了相关滤波跟踪器被错误样本更新。提出的目标跟踪方法对长视频中的各类挑战较为鲁棒,能够长时间稳定跟踪目标。
-
公开(公告)号:CN110135365A
公开(公告)日:2019-08-16
申请号:CN201910418050.4
申请日:2019-05-20
Applicant: 厦门大学
Abstract: 基于幻觉对抗网络的鲁棒目标跟踪方法,涉及计算机视觉技术。首先提出一种新的幻觉对抗网络,旨在于学习样本对间的非线性形变,并将学习到的形变施加在新目标以此来生成新的目标形变样本。为了能有效训练所提出的幻觉对抗网络,提出形变重构损失。基于离线训练的幻觉对抗网络,提出基于幻觉对抗网络的目标跟踪方法,该方法能有效缓解深度神经网络在目标跟踪过程中由于在线更新发生的过拟合问题。此外,为了能进一步提升形变迁移质量,提出选择性性变迁移方法,进一步提升了跟踪精度。提出的目标跟踪方法在当前主流目标跟踪数据集上取得了具有竞争力的结果。
-
公开(公告)号:CN110148159B
公开(公告)日:2021-03-26
申请号:CN201910418073.5
申请日:2019-05-20
Applicant: 厦门大学
IPC: G06T7/246
Abstract: 一种基于事件相机的异步目标跟踪方法,涉及计算机视觉技术。包含三个主要部分:开始的目标检测模块、目标跟踪模块和恢复跟踪模块;所述开始的目标检测模块用于提取ATSLTD帧上的目标建议窗口;所述目标跟踪模块根据最小化目标时空不一致信息原则选择最佳的目标建议窗口作为跟踪结果;所述恢复跟踪模块用于跟踪失败时恢复对目标的跟踪。该方法能够有效地应对目标跟踪中存在的目标快速运动和高动态范围场景等问题,取得了优于主流基于传统相机的目标跟踪算法的精度。
-
公开(公告)号:CN110189362A
公开(公告)日:2019-08-30
申请号:CN201910452361.2
申请日:2019-05-28
Applicant: 厦门大学
Abstract: 基于多分支自编码对抗网络的高效目标跟踪方法。在有标记的离线目标跟踪数据集中收集大量目标模板和包含有目标的搜索区域样本对;使用均方误差损失,通过全监督的方式对所提出的目标概率生成器进行初步训练;引入判别器,加入对抗训练的方式共同优化目标概率生成器和判别器;给定测试视频中的第一帧,采样其标注的目标区域作为初始目标模板;给定测试帧,以当前目标长宽的N倍大小的窗口进行随机的位移来得到搜索区域;将搜索区域和目标模板输入目标概率生成器,输出得到目标概率图,选取目标概率图中最大值点的位置作为目标中心;根据目标概率图分布估计目标在当前帧的尺度;根据当前帧估计的目标区域进行目标模板更新。
-
公开(公告)号:CN110148159A
公开(公告)日:2019-08-20
申请号:CN201910418073.5
申请日:2019-05-20
Applicant: 厦门大学
IPC: G06T7/246
Abstract: 一种基于事件相机的异步目标跟踪方法,涉及计算机视觉技术。包含三个主要部分:开始的目标检测模块、目标跟踪模块和恢复跟踪模块;所述开始的目标检测模块用于提取ATSLTD帧上的目标建议窗口;所述目标跟踪模块根据最小化目标时空不一致信息原则选择最佳的目标建议窗口作为跟踪结果;所述恢复跟踪模块用于跟踪失败时恢复对目标的跟踪。该方法能够有效地应对目标跟踪中存在的目标快速运动和高动态范围场景等问题,取得了优于主流基于传统相机的目标跟踪算法的精度。
-
-
-
-
-
-
-
-
-