-
公开(公告)号:CN119250133A
公开(公告)日:2025-01-03
申请号:CN202411224385.X
申请日:2024-09-03
Applicant: 厦门大学
IPC: G06N3/0495
Abstract: 本发明公开一种基于联合优化的LLMs组合压缩方法、电子设备和存储介质,将量化和稀疏化方法相结合,并同时最小化量化和稀疏化带来的误差,包括以下步骤:从WikiText2训练语料库中采样128个片段,每个片段包含2048个标签;使用统计指标初始化对角线变换矩阵,使用等效变换操作对权重进行初步量化,确定量化步长和零点,并通过步骤1采样的数据对其进行校准;计算稀疏掩码,使用重要性指标#imgabs0#进行重新排列权重,优先稀疏化不重要的权重;进行联合优化;使用不同的数据集对压缩后的模型进行评估,验证其性能提升。