一种基于深度神经网络的人体行为识别方法

    公开(公告)号:CN109919031B

    公开(公告)日:2021-04-09

    申请号:CN201910097412.4

    申请日:2019-01-31

    Applicant: 厦门大学

    Abstract: 一种基于深度神经网络的人体行为识别方法,涉及人体行为识别领域。采集视频数据集,根据视频中的人体行为类别对视频进行切割,并赋予对应的类别标签;对视频数据进行抽帧和光流计算预处理,并对抽取的视频帧和光流图像赋予与其对应视频相同的类别标签;人体行为特征学习,使用深度卷积神经网络和双支流输入类残差长短期记忆单元循环神经网络LSTM模型学习视频长时序运动特征;根据学习到的人体行为识别特征,用Softmax层融合两条支流类残差循环神经网络学习到的长时序运动特征,并输出视频的识别类别。

    一种基于深度神经网络的人体行为识别方法

    公开(公告)号:CN109919031A

    公开(公告)日:2019-06-21

    申请号:CN201910097412.4

    申请日:2019-01-31

    Applicant: 厦门大学

    Abstract: 一种基于深度神经网络的人体行为识别方法,涉及人体行为识别领域。采集视频数据集,根据视频中的人体行为类别对视频进行切割,并赋予对应的类别标签;对视频数据进行抽帧和光流计算预处理,并对抽取的视频帧和光流图像赋予与其对应视频相同的类别标签;人体行为特征学习,使用深度卷积神经网络和双支流输入类残差长短期记忆单元循环神经网络LSTM模型学习视频长时序运动特征;根据学习到的人体行为识别特征,用Softmax层融合两条支流类残差循环神经网络学习到的长时序运动特征,并输出视频的识别类别。

Patent Agency Ranking