一种用于抑郁症脑部图像的类属共享半监督特征选择方法

    公开(公告)号:CN118470373A

    公开(公告)日:2024-08-09

    申请号:CN202410394369.9

    申请日:2024-04-02

    Applicant: 南通大学

    Abstract: 本发明提供了一种用于抑郁症脑部图像的类属共享半监督特征选择方法,属于医学图像标记选择技术领域。解决了抑郁症患者脑部区域图像样本中存在未标注数据和过多冗余的病理属性的技术问题。其技术方案为:包括如下步骤:S10、读取抑郁症脑部图像数据,对其进行预处理和划分,最终构建一个四元组决策信息系统;S20、对于有标记数据和无标记数据分别根据距离度量构造模糊信息粒形成模糊相似关系;S30、根据最大相关最小冗余策略,刻画抑郁症数据特征重要度;S40、将标签特定特征特征选择方法和动态优化策略结合,选取预测抑郁症的重要脑区域。本发明的有益效果为:有助于抑郁症的预测,改善抑郁病的诊断和治疗效果。

Patent Agency Ranking