-
公开(公告)号:CN119249199A
公开(公告)日:2025-01-03
申请号:CN202411298634.X
申请日:2024-09-18
Applicant: 南通大学
Abstract: 本发明提供了一种基于证据理论的模糊超图神经网络的精神分裂症分类方法,属于超图神经网络与证据理论技术领域,解决了精神分裂症识别任务中存在的异质性较高的技术问题。其技术方案为:首先,通过稀疏约束函数构建优秀的超边粒度模型,将异质性较高的节点排除超边粒度模型;然后,在模糊超图的构建过程中,应用证据理论融合关联质量函数和距离质量函数;通过模糊隶属度刻画节点权重,提升异质性较低节点的权重;最后,通过模糊超图卷积模型,识别精神分裂症患者的标签,提升精神分裂症数据的分类精度及优化语义解释;本发明的有益效果为:提高精神分裂症诊断的准确性与可解释性。
-
公开(公告)号:CN119446495A
公开(公告)日:2025-02-14
申请号:CN202411567109.3
申请日:2024-11-05
Applicant: 南通大学
IPC: G16H50/20 , G06V10/764 , G06V10/82 , G06V10/80
Abstract: 本发明提供了一种基于模糊内核的组织病理全量影像多任务方法,属于医学图像智能诊断技术领域,解决了当前全量影像模型无法同时进行高准确率分类和预测任务的技术问题。其技术方案为:首先,将全量图像预处理为微环境图像ITEM和低分辨率图像ILR;然后,通过隶属函数模糊和去模糊化,并将结果存储在内核中;接下来,通过交叉注意力对特征进行融合;再次,设计一种融合扩散模型,能够在扩散过程中受到动态模糊内核的引导;最后,将扩散后的特征放入分类和生存预测神经网络,得到最终结果。本发明的有益效果为:对多模态医学全量图像进行多任务处理,可以精确的对疾病进行分类及生存预测,帮助医生更全面确的了解肿瘤侵袭性和转移倾向。
-
公开(公告)号:CN119942136A
公开(公告)日:2025-05-06
申请号:CN202510021994.3
申请日:2025-01-07
Applicant: 南通大学
IPC: G06V10/40 , G06V10/764 , G06V10/774 , G16H50/20 , G06N3/0455 , G06N3/048 , G06N3/08
Abstract: 本发明提供了一种基于直觉模糊编码器的阿尔茨海默症图像特征选择方法,属于医学信息智能处理技术领域,解决了阿尔茨海默症分析时高维特征冗余,分类效果不佳的技术问题。技术方案为:包括以下步骤:S10采集被试的阿尔茨海默症试样本集进行预处理;S20计算每个样本的隶属度和非隶属度,构建基于直觉模糊集的得分矩阵;S30预训练一个全局样本的直觉模糊自动编码器模型;S40构建稀疏特征编码网络,迁移学习参数,对权重矩阵进行稀疏化处理以获得重要特征。本发明的有益效果为:能够有效处理病理数据特征冗余问题,既降低数据维度以减少计算需求,又提高了分类准确率,为实际临床诊断提供了技术支持。
-
公开(公告)号:CN119152253A
公开(公告)日:2024-12-17
申请号:CN202411133754.4
申请日:2024-08-19
Applicant: 南通大学
IPC: G06V10/764 , G06V10/80 , G06V10/82 , G06N3/0455 , G06N3/08
Abstract: 本发明提供了一种基于序贯三支掩码和注意力融合的Transformer解释方法,属于人工智能可解释性技术领域。解决了Transformer模型解释困难导致难以投入现实应用的技术问题,其技术方案为:首先将图像输入标准的Transformer模块,保存每一层编码器层的注意力矩阵,并聚合生成关系矩阵;接下来取出最终编码器层输出,重塑并上采样作为掩码放入掩码集;接着利用序贯三支决策选出积极掩码集,并获取初步解释结果;最后,将第一步聚合的生成关系矩阵与初步解释结果融合生成最终解释结果。本发明的有益效果为:解释效果好,对自然图像和医学图像均可得到较好的解释结果,帮助人类理解深度学习模型。
-
公开(公告)号:CN119205819A
公开(公告)日:2024-12-27
申请号:CN202411468561.4
申请日:2024-10-21
Applicant: 南通大学
Abstract: 本发明提供了一种基于模糊学习的脑肿瘤图像加速扩散网络分割方法,属于医学图像智能分割技术领域。解决了脑肿瘤图像因纹理模糊和边界消失导致的分割准确率低的技术问题。其技术方案为:包括以下步骤:S1、对脑肿瘤图像数据集进行数据预处理;S2、对脑肿瘤图像使用3D U‑Net网络进行预分割,将得到的分割图进行迭代加噪使其成为一个纯噪声图像;S3、对纯噪声图像进行迭代去噪,使用模糊U‑Net网络学习去噪过程;S4、提前停止去噪过程,使用3D U‑Net网络对分割图进行分割得到最终的分割结果。本发明的有益效果为:分割准确率高,为脑肿瘤图像的分割提供决策支持,为医生的诊断提供了便利。
-
-
-
-