-
公开(公告)号:CN113961933B
公开(公告)日:2024-07-23
申请号:CN202111227292.9
申请日:2021-10-21
Applicant: 南通大学
IPC: G06F21/57 , G06F18/2431 , G06F18/2415 , G06N3/0455 , G06N3/0499 , G06N3/047 , G06N3/09
Abstract: 本发明涉及信息安全和自然语言处理技术领域,具体涉及一种基于改进Bert模型的信息安全漏洞分类方法,包括步骤a、数据预处理,从语料库中搜集所有漏洞信息数据作为数据集,通过过滤和清洗的方式对数据集进行预处理,其数据集格式为 ;采用分词方式将数据集分为一个个字作为输入序列X=(x1,x2,…,xn)。本发明首先对数据进行清洗和过滤,剔除数据集中的噪音数据,可提升信息安全漏洞分类模型的表现;本发明其次引入基于预训练的Bert模型对漏洞进行分类;最后在词嵌入层加入对抗训练FGM、双向编码器后加入多样本随机丢弃(multi‑sample dropout)和标签平滑Focal Loss等技巧提升模型鲁棒性和泛化能力,进一步提升漏洞分类的准确率。
-
公开(公告)号:CN115758267A
公开(公告)日:2023-03-07
申请号:CN202211400955.7
申请日:2022-11-09
Applicant: 南通大学
Abstract: 本发明涉及人工智能技术领域,尤其涉及一种基于SRU和双重注意力的脑电信号情绪识别方法,包括:对数据集进行分段预处理以扩充样本数量,由一维卷积提取62个通道局部情感特征;构建嵌入内注意力简单循环单元以捕捉多通道融合特征以及通道之间的依赖关系,全局注意力机制识别出对情感倾向识别影响较大的重点特征,进一步增强对深层次脑电信号特征的学习;线性层输出积极、中性、消极的情感识别结果。实验结果表明,本发明取得了90.24%的平均分类准确率,高于实验对比的优秀深度学习模型,嵌入内注意力简单循环单元特征捕捉能力更强,能够准确地识别出脑电信号所表示的情感倾向,实现检测自动化,同时为医生诊断提供有效的辅助决策。
-
公开(公告)号:CN113961933A
公开(公告)日:2022-01-21
申请号:CN202111227292.9
申请日:2021-10-21
Applicant: 南通大学
Abstract: 本发明涉及信息安全和自然语言处理技术领域,具体涉及一种基于改进Bert模型的信息安全漏洞分类方法,包括步骤a、数据预处理,从语料库中搜集所有漏洞信息数据作为数据集,通过过滤和清洗的方式对数据集进行预处理,其数据集格式为 ;采用分词方式将数据集分为一个个字作为输入序列X=(x1,x2,…,xn)。本发明首先对数据进行清洗和过滤,剔除数据集中的噪音数据,可提升信息安全漏洞分类模型的表现;本发明其次引入基于预训练的Bert模型对漏洞进行分类;最后在词嵌入层加入对抗训练FGM、双向编码器后加入多样本随机丢弃(multi‑sample dropout)和标签平滑Focal Loss等技巧提升模型鲁棒性和泛化能力,进一步提升漏洞分类的准确率。
-
公开(公告)号:CN114757942A
公开(公告)日:2022-07-15
申请号:CN202210593973.5
申请日:2022-05-27
Applicant: 南通大学
Abstract: 本发明涉及计算机视觉目标检测任务技术领域,尤其涉及一种基于深度学习的多层螺旋CT对活动性肺结核的检测方法,包括:S1:收集汇总活动性肺结核CT影像,转换CT图像格式,并对转换后的图像进行预处理;S2:将预处理后的图像输入基于阈值的肺实质分割模型,获得肺实质图像;S3:将肺实质图像交由放射科医生进行标注,标注出原发性肺结核、继发性肺结核以及血行播散性肺结核的病灶区域,制作样本数据集;S4:将样本数据集输入已训练好的DetectionTransformer网络模型中进行预测处理,获得检测结果。本发明采用多层螺旋CT图像作为数据集,能够更好的显示活动性肺结核在放射学中的特征,包括厚壁空洞、肺实质、小叶中心结节和树芽征,大幅提高了对于病灶检测的准确度。
-
-
-