-
公开(公告)号:CN119763809A
公开(公告)日:2025-04-04
申请号:CN202411877187.3
申请日:2024-12-19
Applicant: 南通大学
IPC: G16H50/20 , G06F18/24 , G06F18/25 , G06F18/214 , G06N3/0464 , G06N3/048 , G06N3/084 , G06F17/18 , G06F17/16
Abstract: 本发明提供一种融合信任损失和决策再分类的图卷积心脏病检测方法。属于医学信息智能处理技术领域,解决了在心脏病检测中,不确定性数据影响分类精度的问题。其技术方案为:首先,采集心脏病信息数据样本集,然后,对上述数据进行预处理,构建邻接矩阵;接着,将处理过后的心脏病信息数据输入图卷积神经网络GCN进行模型的训练;最后,模型进入测试阶段,得到初步分类结果后进入决策层,根据阈值筛选出不确定节点信息,利用高斯核进行映射,使其在高维可分,达到再分类效果。
-
公开(公告)号:CN119742050A
公开(公告)日:2025-04-01
申请号:CN202411806508.0
申请日:2024-12-10
Applicant: 南通大学
IPC: G16H50/20 , G16H50/70 , G06F18/2415 , G06F17/10 , G06F18/214
Abstract: 本发明提供了面向肺炎病因诊断的贝叶斯网络与粗糙集特征选择方法,属于医学信息智能处理技术领域,解决了肺炎病因诊断中症状重叠、标签歧义以及数据特征冗余的技术问题。技术方案为:包括以下步骤S1,对患者的肺炎数据进行数据预处理;S2,以患者特征和病因标签为节点,构建贝叶斯网络以解决病因标签的消歧问题,并生成标签置信度矩阵;S3,基于邻域粗糙集计算每个特征对病因标签的依赖度;S4,结合显著性分析和冗余度约简,筛选最优特征集。本发明的有益效果为:本发明方法以肺炎诊断场景为应用背景,能够有效处理患者病因复杂性和数据冗余问题,既提高了诊断的可靠性与效率,又降低了计算成本,为实际临床诊断提供了技术支持。
-