-
公开(公告)号:CN113453148B
公开(公告)日:2022-05-13
申请号:CN202110710289.6
申请日:2021-06-25
Applicant: 南通大学 , 南通先进通信技术研究院有限公司
IPC: H04W4/02 , H04W4/021 , H04W4/33 , H04W64/00 , G06K9/62 , G06N3/04 , G06N3/08 , G06V10/764 , G06V10/82
Abstract: 本发明公开了一种联合深度学习与加权K邻近算法的室内位置指纹定位方法,该方法首先在定位区域采集WLAN信号特征数据建立指纹库以训练卷积神经网络,之后基于该训练完成的CNN网络模型进行用户位置的初定位,然后根据用户初定位位置坐标确定用户在定位区域内的理论范围,并在局部蓝牙Mesh网络中应用加权K邻近算法进行用户精确位置定位,最后将用户精确位置坐标反馈给用户设备。本发明联合应用了深度学习模型与加权K邻近算法进行位置指纹定位算法的优化,提高了该算法的定位精度,同时联合应用了蓝牙Mesh与WiFi技术搭建主体网络,用户设备组网方便,可实现室内高精度定位。
-
公开(公告)号:CN114650608B
公开(公告)日:2023-04-07
申请号:CN202210405586.4
申请日:2022-04-18
Applicant: 南通大学
Abstract: 本发明公开了一种去蜂窝大规模MIMO的多中心处理单元协作方法,包括:去蜂窝大规模MIMO网络布设分布式接入点AP,所有接入点AP被分成若干个实际簇;导频传输阶段,所有用户向所有的接入点AP发送导频信号,中心处理单元根据接收到的导频信号获得信道估计信息和统计信息;上行链路传输阶段,针对某个用户,各个中心处理单元将各自的统计信息发往某个中心处理单元,该中心处理单元根据统计信息,基于广义瑞利熵定理为不同的中心处理单元计算权重;利用计算出的权重,该中心处理单元对各个中心处理单元接收到的数据信号进行加权合并处理,使得这些中心处理单元在同一时频资源上协同为用户服务。本发明具有系统信号处理复杂度低与所需信令开销小的优点。
-
公开(公告)号:CN113453148A
公开(公告)日:2021-09-28
申请号:CN202110710289.6
申请日:2021-06-25
Applicant: 南通大学 , 南通先进通信技术研究院有限公司
Abstract: 本发明公开了一种联合深度学习与加权K邻近算法的室内位置指纹定位方法,该方法首先在定位区域采集WLAN信号特征数据建立指纹库以训练卷积神经网络,之后基于该训练完成的CNN网络模型进行用户位置的初定位,然后根据用户初定位位置坐标确定用户在定位区域内的理论范围,并在局部蓝牙Mesh网络中应用加权K邻近算法进行用户精确位置定位,最后将用户精确位置坐标反馈给用户设备。本发明联合应用了深度学习模型与加权K邻近算法进行位置指纹定位算法的优化,提高了该算法的定位精度,同时联合应用了蓝牙Mesh与WiFi技术搭建主体网络,用户设备组网方便,可实现室内高精度定位。
-
公开(公告)号:CN114650608A
公开(公告)日:2022-06-21
申请号:CN202210405586.4
申请日:2022-04-18
Applicant: 南通大学
Abstract: 本发明公开了一种去蜂窝大规模MIMO的多中心处理单元协作方法,包括:去蜂窝大规模MIMO网络布设分布式接入点AP,所有接入点AP被分成若干个实际簇;导频传输阶段,所有用户向所有的接入点AP发送导频信号,中心处理单元根据接收到的导频信号获得信道估计信息和统计信息;上行链路传输阶段,针对某个用户,各个中心处理单元将各自的统计信息发往某个中心处理单元,该中心处理单元根据统计信息,基于广义瑞利熵定理为不同的中心处理单元计算权重;利用计算出的权重,该中心处理单元对各个中心处理单元接收到的数据信号进行加权合并处理,使得这些中心处理单元在同一时频资源上协同为用户服务。本发明具有系统信号处理复杂度低与所需信令开销小的优点。
-
-
-