一种基于卷积神经网络的车牌字符识别方法

    公开(公告)号:CN114581903A

    公开(公告)日:2022-06-03

    申请号:CN202210300962.3

    申请日:2022-03-24

    Applicant: 南通大学

    Abstract: 本发明提供了一种基于卷积神经网络的车牌字符识别方法,属于深度学习技术领域。解决了传统车牌字符识别方法计算简单,对噪声抵抗差,鲁棒性较差的问题。其技术方案为:包括以下步骤:S1、基于经典LeNet‑5卷积神经网络结构,搭建车牌字符识别神经网络框架;S2、根据步骤S1中搭建的网络框架,制作车牌字符训练数据集;S3、将步骤S2中制作的数据集,通过卷积神经网络训练得到车牌识别网络模型;S4、将已分割好的车牌字符放入神经网络中进行识别,得到车牌识别结果。本发明的有益效果为:本发明能够提高车牌识别的准确率;并且在图像识别处理方面有着明显的优势。

Patent Agency Ranking