一种基于遥感植被物候的花粉信息预测方法

    公开(公告)号:CN114970941A

    公开(公告)日:2022-08-30

    申请号:CN202210294633.2

    申请日:2022-03-23

    Abstract: 本发明提供了一种基于遥感植被物候的花粉信息预测方法,包括:S1、获取数据并进行预处理;S2、对花粉释放信息与遥感植被物候进行时空相关性分析;S3、对遥感植被物候与气候环境因素进行时空相关性分析;S4、对遥感植被物候信息以及气候环境要素进行特征提取,并且利用逐步回归模型进行花粉释放信息预测;S5、花粉释放信息区域制图:获取研究区域的遥感植被物候信息,以及与花粉释放信息有关的气候环境因素和对应逐步回归方程中得到的拟合系数,得到区域尺度内花粉预测信息。本发明利用遥感植被物候区域尺度和长时间序列数据信息,结合气候环境的影响,可以弥补花粉监测站点的不足,提供高质量、大区域尺度的花粉信息及其年际动态变化趋势。

    基于平行深度学习网络架构的遥感影像锐化方法

    公开(公告)号:CN113902650B

    公开(公告)日:2022-04-12

    申请号:CN202111481416.6

    申请日:2021-12-07

    Abstract: 本发明提供了一种基于平行深度学习网络架构的遥感影像锐化方法,包括以下步骤:S1、获得遥感全色影像在锐化过程中的光谱要素特征:建立多层次深度卷积神经网络架构,获取遥感影像中多光谱波段与全色波段时空‑光谱之间的定量关系;S2、获得遥感多光谱影像在锐化过程中的纹理要素特征:建立多尺度深度卷积神经网络架构,获取遥感影像全色波段不同地物类型的纹理细节特征;S3、获取遥感影像锐化产品:融合所述光谱要素特征和纹理要素特征,建立深度学习重建网络以获取遥感影像锐化产品。本发明适用于多种遥感影像传感器,同时又能在复杂地物类型中提高遥感影像空间分辨率和光谱信息保真度,解决遥感影像快速、准确生产出锐化产品的问题。

    基于平行深度学习网络架构的遥感影像锐化方法

    公开(公告)号:CN113902650A

    公开(公告)日:2022-01-07

    申请号:CN202111481416.6

    申请日:2021-12-07

    Abstract: 本发明提供了一种基于平行深度学习网络架构的遥感影像锐化方法,包括以下步骤:S1、获得遥感全色影像在锐化过程中的光谱要素特征:建立多层次深度卷积神经网络架构,获取遥感影像中多光谱波段与全色波段时空‑光谱之间的定量关系;S2、获得遥感多光谱影像在锐化过程中的纹理要素特征:建立多尺度深度卷积神经网络架构,获取遥感影像全色波段不同地物类型的纹理细节特征;S3、获取遥感影像锐化产品:融合所述光谱要素特征和纹理要素特征,建立深度学习重建网络以获取遥感影像锐化产品。本发明适用于多种遥感影像传感器,同时又能在复杂地物类型中提高遥感影像空间分辨率和光谱信息保真度,解决遥感影像快速、准确生产出锐化产品的问题。

Patent Agency Ranking