-
公开(公告)号:CN105809286A
公开(公告)日:2016-07-27
申请号:CN201610132612.5
申请日:2016-03-08
Applicant: 南昌工程学院
Abstract: 本发明公开了一种基于代表数据重构的增量SVR负荷预测方法,包括:获取电力负荷数据;利用相空间重构原理得到多输入?单输出模式数据;利用所得模式数据和粒子群算法建立支持向量回归模型;实时获取新增的电力负荷预测数据;利用增量学习算法更新最优代表数据子集;利用嵌套粒子群方法更新模型参数;利用更新后的模型参数和最优代表数据子集建立支持向量回归模型;确定增量负荷预测并输出增量负荷预测值。本发明将支持向量回归的支持向量应用于海量数据的知识理解研究,提出的方法能够实现新增数据引起的代表数据重构,有效解决了海量数据计算复杂性高、难以提取知识的问题,嵌套地实现了模型参数的更新,为电力系统规划与运行提供参考依据。
-
公开(公告)号:CN105809286B
公开(公告)日:2021-08-03
申请号:CN201610132612.5
申请日:2016-03-08
Applicant: 南昌工程学院
Abstract: 本发明公开了一种基于代表数据重构的增量SVR负荷预测方法,包括:获取电力负荷数据;利用相空间重构原理得到多输入‑单输出模式数据;利用所得模式数据和粒子群算法建立支持向量回归模型;实时获取新增的电力负荷预测数据;利用增量学习算法更新最优代表数据子集;利用嵌套粒子群方法更新模型参数;利用更新后的模型参数和最优代表数据子集建立支持向量回归模型;确定增量负荷预测并输出增量负荷预测值。本发明将支持向量回归的支持向量应用于海量数据的知识理解研究,提出的方法能够实现新增数据引起的代表数据重构,有效解决了海量数据计算复杂性高、难以提取知识的问题,嵌套地实现了模型参数的更新,为电力系统规划与运行提供参考依据。
-