-
公开(公告)号:CN119066983B
公开(公告)日:2025-05-09
申请号:CN202411534758.3
申请日:2024-10-31
Applicant: 南昌大学
IPC: G06F30/27 , G06F30/23 , G06F30/17 , G06N3/006 , G06F16/901 , G06F111/04 , G06F119/04 , G06F119/14
Abstract: 本发明公开了一种机器学习引导的动态种群优化设计方法,适用于全回转推进器驱动轴轻量化设计问题,包括:考虑驱动轴结构参数与服役约束进行种群与参数初始化;基于迭代信息与多目标非支配排序法确定动态种群;构造适应种群个体潜力的进化操作来产生候选子代池;在每个候选子代个体邻域范围内确定机器学习模型建模样本;构造高斯过程机器学习模型,并推导候选子代个体期望提升量;根据松弛因子与多目标非支配排序法筛选真实子代个体,并更新种群;构造基于高斯过程的局部搜索定位局部高潜力个体,更新迭代信息。本发明综合考虑重量目标与疲劳约束来设计算法优化轨迹,提高了算法针对全回转推进器驱动轴轻量化设计问题的全局适应性与收敛速度。
-
公开(公告)号:CN119293614A
公开(公告)日:2025-01-10
申请号:CN202411814959.9
申请日:2024-12-11
Applicant: 南昌大学
IPC: G06F18/2411 , G06F18/214
Abstract: 本发明提供一种基于全局与局部代理模型辅助的双区域协同优化方法,涉及桁架平面结构设计优化领域,该方法通过采用双层协同框架,以区分处理不同类型变量,解决混合整数变量的昂贵约束问题。具体的,基于径向基函数的协同框架包括基于历史有潜力区域的局部搜索策略和基于径向基函数辅助的预筛选策略;基于高斯过程的混合整数协同框架包括基于当前可能有潜力区域的局部搜索策略和基于高斯过程辅助的预筛选策略;利用基于径向基函数的协同框架,充分发挥经典基于代理模型的协作框架的快速收敛能力,快速定位高潜力区域;利用基于高斯过程的混合整数协同框架通过提供稳定的优化轨迹来搜索不连通的可行区域,平衡了高潜力区域的收敛性和可行性。
-
公开(公告)号:CN119066983A
公开(公告)日:2024-12-03
申请号:CN202411534758.3
申请日:2024-10-31
Applicant: 南昌大学
IPC: G06F30/27 , G06F30/23 , G06F30/17 , G06N3/006 , G06F16/901 , G06F111/04 , G06F119/04 , G06F119/14
Abstract: 本发明公开了一种机器学习引导的动态种群优化设计方法,适用于全回转推进器驱动轴轻量化设计问题,包括:考虑驱动轴结构参数与服役约束进行种群与参数初始化;基于迭代信息与多目标非支配排序法确定动态种群;构造适应种群个体潜力的进化操作来产生候选子代池;在每个候选子代个体邻域范围内确定机器学习模型建模样本;构造高斯过程机器学习模型,并推导候选子代个体期望提升量;根据松弛因子与多目标非支配排序法筛选真实子代个体,并更新种群;构造基于高斯过程的局部搜索定位局部高潜力个体,更新迭代信息。本发明综合考虑重量目标与疲劳约束来设计算法优化轨迹,提高了算法针对全回转推进器驱动轴轻量化设计问题的全局适应性与收敛速度。
-
公开(公告)号:CN117494567B
公开(公告)日:2024-10-11
申请号:CN202311499733.X
申请日:2023-11-10
Applicant: 南昌大学
IPC: G06F30/27 , G06N3/006 , G06F111/06 , G06F111/04 , G06F119/14
Abstract: 本发明公开了一种面向混合整数昂贵优化问题的代理模型辅助差分进化方法,包括:(1)确定设计空间与优化目标,种群与关键迭代参数初始化,给出收敛条件;(2)根据目标与约束评估耗时构建全局径向基函数代理模型;(3)构建动态种群筛选机制及相适应的变异操作;(4)设计变异标准差自适应缩放机制;(5)构建代理模型辅助的差分变异‑筛选‑选择框架;(6)分别针对两类局部区域构建局部搜索策略;(7)更新种群与关键迭代参数信息,判断是否达到收敛条件,若收敛则输出优化解,否则转至步骤(2),直至达到收敛条件。本发明有效融合了代理模型辅助的全局维度扰动预筛与差分进化策略,针对混合整数变量昂贵优化问题的收敛速度较快。
-
公开(公告)号:CN117494567A
公开(公告)日:2024-02-02
申请号:CN202311499733.X
申请日:2023-11-10
Applicant: 南昌大学
IPC: G06F30/27 , G06N3/006 , G06F111/06 , G06F111/04 , G06F119/14
Abstract: 本发明公开了一种面向混合整数昂贵优化问题的代理模型辅助差分进化方法,包括:(1)确定设计空间与优化目标,种群与关键迭代参数初始化,给出收敛条件;(2)根据目标与约束评估耗时构建全局径向基函数代理模型;(3)构建动态种群筛选机制及相适应的变异操作;(4)设计变异标准差自适应缩放机制;(5)构建代理模型辅助的差分变异‑筛选‑选择框架;(6)分别针对两类局部区域构建局部搜索策略;(7)更新种群与关键迭代参数信息,判断是否达到收敛条件,若收敛则输出优化解,否则转至步骤(2),直至达到收敛条件。本发明有效融合了代理模型辅助的全局维度扰动预筛与差分进化策略,针对混合整数变量昂贵优化问题的收敛速度较快。
-
-
-
-