一种基于禁忌空间划定的机器学习协助的差分进化方法

    公开(公告)号:CN118821627B

    公开(公告)日:2025-03-18

    申请号:CN202411303019.3

    申请日:2024-09-19

    Applicant: 南昌大学

    Abstract: 本发明公开了一种基于禁忌空间划定的机器学习协助的差分进化方法,适用于全回转推进器驱动轴的服役时间最大化问题,包括:考虑驱动轴结构参数与交变载荷进行种群与参数初始化,构建确定禁忌空间;设计机器学习驱动的潜力空间确定策略来构造潜力空间与机器学习模型;基于潜力空间贪婪信息与禁忌空间反向位置信息构造贪婪协同进化操作;采用二项交叉策略获得对应的候选子代个体池;基于机器学习构建特性推导候选子代个体不确定性评估方法;更新种群与重构禁忌空间与潜力空间,重复判断是否达到收敛条件,直到输出优化解。本发明能够针对全回转推进器驱动轴服役时间最大化问题构造实时禁忌空间与潜力空间,加快最优结构参数优化效率,缩短设计周期。

    一种基于机器学习的红外隐身材料膜层优化设计方法

    公开(公告)号:CN119943234A

    公开(公告)日:2025-05-06

    申请号:CN202510413042.6

    申请日:2025-04-03

    Applicant: 南昌大学

    Abstract: 本发明公开了一种基于机器学习的红外隐身材料膜层优化设计方法,包括:(1)构建以最小化红外隐身材料膜层光谱发射率的误差目标值的数学优化模型;(2)采用拉丁超立方采样产生种群;(3)构建注意力信息增强的结合最大信息系数的克里金机器学习模型;(4)基于误差目标值和多样性指标分别生成第一类子种群和第二类子种群;(5)对第一类子种群执行维度扰动驱动的梯度下降变异,基于预测误差筛选第一个子代个体;(6)对第二类子种群执行双层差分变异,基于期望提升值筛选第二个子代个体;(7)执行仿真分析并更新数据库,返回步骤(3)直至仿真分析次数达到设计周期。本发明能够提高红外隐身材料膜层设计问题的收敛精度。

    一种基于禁忌空间划定的机器学习协助的差分进化方法

    公开(公告)号:CN118821627A

    公开(公告)日:2024-10-22

    申请号:CN202411303019.3

    申请日:2024-09-19

    Applicant: 南昌大学

    Abstract: 本发明公开了一种基于禁忌空间划定的机器学习协助的差分进化方法,适用于全回转推进器驱动轴的服役时间最大化问题,包括:考虑驱动轴结构参数与交变载荷进行种群与参数初始化,构建确定禁忌空间;设计机器学习驱动的潜力空间确定策略来构造潜力空间与机器学习模型;基于潜力空间贪婪信息与禁忌空间反向位置信息构造贪婪协同进化操作;采用二项交叉策略获得对应的候选子代个体池;基于机器学习构建特性推导候选子代个体不确定性评估方法;更新种群与重构禁忌空间与潜力空间,重复判断是否达到收敛条件,直到输出优化解。本发明能够针对全回转推进器驱动轴服役时间最大化问题构造实时禁忌空间与潜力空间,加快最优结构参数优化效率,缩短设计周期。

Patent Agency Ranking