-
公开(公告)号:CN119539212A
公开(公告)日:2025-02-28
申请号:CN202510103963.2
申请日:2025-01-23
Applicant: 南昌大学
IPC: G06Q10/04 , G06Q40/08 , G06F18/20 , G06F18/21 , G06F18/211 , G06F18/213
Abstract: 本发明公开了基于多维特征ML的城市级退役动力电池量预测方法及系统,方法包括:获取预设时间段内新能源汽车上险量和N种城市特征值构建数据集;对N种城市特征值进行分析,确定影响新能源汽车上险量的城市关键特征值及其权重值;根据城市关键特征值及其权重值筛选数据集,并利用筛选后的数据集训练多种调优的机器学习模型;评估各机器学习模型的预测性能,分别为预测乘用车和商用车上险量选取最佳模型;将未来城市关键特征值输入最佳模型以预测新能源汽车上险量;基于预测的新能源汽车上险量,利用新能源汽车的电池类型占比和电池特性,结合Weibull寿命分布,预测城市级退役动力电池量。本发明能够实现对城市级退役动力电池量的预测准确性与实用性。