-
公开(公告)号:CN110428473B
公开(公告)日:2022-06-14
申请号:CN201910529133.0
申请日:2019-06-18
Applicant: 南昌大学
Abstract: 本发明提供了一种基于辅助变量的对抗生成网络的彩色图像灰度化方法,包括以下步骤:步骤A:检验输入图像是否为彩色图像,若为彩色图像则使用梯度相关相似度灰度化(GcsDecolor)算法对其进行灰度化处理,并将灰度化后图像进行复制,得到三份灰度化图像作为对抗生成网络的对比图像;步骤B:设计基于辅助变量的对抗生成网络(AV‑GAN),训练AV‑GAN网络;步骤C:将彩色图像通过已训练完成的AV‑GAN网络进行测试,得到最终的灰度化图像。本发明使彩色图像灰度化计算效率较高,并可保存彩色图像的显著特征,使灰度化图像可保留颜色排序,更好地反映了彩色和灰度图像之间的结构相似性。
-
公开(公告)号:CN110428473A
公开(公告)日:2019-11-08
申请号:CN201910529133.0
申请日:2019-06-18
Applicant: 南昌大学
Abstract: 本发明提供了一种基于辅助变量的对抗生成网络的彩色图像灰度化方法,包括以下步骤:步骤A:检验输入图像是否为彩色图像,若为彩色图像则使用梯度相关相似度灰度化(GcsDecolor)算法对其进行灰度化处理,并将灰度化后图像进行复制,得到三份灰度化图像作为对抗生成网络的对比图像;步骤B:设计基于辅助变量的对抗生成网络(AV-GAN),训练AV-GAN网络;步骤C:将彩色图像通过已训练完成的AV-GAN网络进行测试,得到最终的灰度化图像。本发明使彩色图像灰度化计算效率较高,并可保存彩色图像的显著特征,使灰度化图像可保留颜色排序,更好地反映了彩色和灰度图像之间的结构相似性。
-