-
公开(公告)号:CN119418915B
公开(公告)日:2025-04-29
申请号:CN202510031898.7
申请日:2025-01-09
Applicant: 南昌大学
IPC: G16H50/20 , G16H50/70 , G06V40/16 , G06V10/52 , G06V10/764 , G06V10/774 , G06V10/80 , G06V10/82 , G06N3/045 , G06N3/08
Abstract: 本申请涉及人工智能辅助疾病检测技术领域,公开了帕金森病评估模型训练方法、系统及帕金森病评估方法,该模型训练方法包括:获取多个样本对象的多类面部表情图像,并为每个样本对象标注真实类别标签(PD患者或非PD患者);通过初始模型的分支网络模块提取多尺度特征,并利用初始模型的注意力融合模块对多尺度特征进行自适应加权融合,形成面部表情融合特征;通过初始模型的分类模块对面部表情融合特征进行分类,得到预测结果;根据预测结果与真实标签的差异构建联合损失函数,以优化模型的分类性能;基于联合损失函数对初始模型进行训练,最终得到目标帕金森病评估模型。该目标帕金森病评估模型能进一步提升帕金森疾病的评估。
-
公开(公告)号:CN119418915A
公开(公告)日:2025-02-11
申请号:CN202510031898.7
申请日:2025-01-09
Applicant: 南昌大学
IPC: G16H50/20 , G16H50/70 , G06V40/16 , G06V10/52 , G06V10/764 , G06V10/774 , G06V10/80 , G06V10/82 , G06N3/045 , G06N3/08
Abstract: 本申请涉及人工智能辅助疾病检测技术领域,公开了帕金森病评估模型训练方法、系统及帕金森病评估方法,该模型训练方法包括:获取多个样本对象的多类面部表情图像,并为每个样本对象标注真实类别标签(PD患者或非PD患者);通过初始模型的分支网络模块提取多尺度特征,并利用初始模型的注意力融合模块对多尺度特征进行自适应加权融合,形成面部表情融合特征;通过初始模型的分类模块对面部表情融合特征进行分类,得到预测结果;根据预测结果与真实标签的差异构建联合损失函数,以优化模型的分类性能;基于联合损失函数对初始模型进行训练,最终得到目标帕金森病评估模型。该目标帕金森病评估模型能进一步提升帕金森疾病的评估。
-