-
公开(公告)号:CN118278398B
公开(公告)日:2024-08-02
申请号:CN202410696047.X
申请日:2024-05-31
Applicant: 南开大学
IPC: G06F40/253 , G06F40/205 , G06N3/0455 , G06N3/088
Abstract: 本发明提供一种基于指令调优增强的无监督语法纠错方法,属于自然语言处理技术领域,具体为:基于开源数据集收集源数据,根据源数据生成包括多个正误语句样本对的纠正数据集;对其中的正确语句及错误语句分别进行标注,获得标注指令和标注提示;构建序列标注模型,将纠正数据集中的错误语句作为输入,将标注指令作为输出,训练序列标注模型并获得预测提示;分别对标注提示及预测提示进行掩码,将经过掩码后的标注提示及预测提示作为输入,训练获得语法纠错模型;通过语法纠错模型对待纠错语句进行纠错,获得纠错结果,本发明提升了模型的语义理解及语法错误定位能力,从而在很大程度上提高了无监督设置下语法纠错方法任务的准确性。
-
公开(公告)号:CN118278398A
公开(公告)日:2024-07-02
申请号:CN202410696047.X
申请日:2024-05-31
Applicant: 南开大学
IPC: G06F40/253 , G06F40/205 , G06N3/0455 , G06N3/088
Abstract: 本发明提供一种基于指令调优增强的无监督语法纠错方法,属于自然语言处理技术领域,具体为:基于开源数据集收集源数据,根据源数据生成包括多个正误语句样本对的纠正数据集;对其中的正确语句及错误语句分别进行标注,获得标注指令和标注提示;构建序列标注模型,将纠正数据集中的错误语句作为输入,将标注指令作为输出,训练序列标注模型并获得预测提示;分别对标注提示及预测提示进行掩码,将经过掩码后的标注提示及预测提示作为输入,训练获得语法纠错模型;通过语法纠错模型对待纠错语句进行纠错,获得纠错结果,本发明提升了模型的语义理解及语法错误定位能力,从而在很大程度上提高了无监督设置下语法纠错方法任务的准确性。
-