-
公开(公告)号:CN101867038B
公开(公告)日:2012-07-04
申请号:CN201010193869.4
申请日:2010-06-08
Applicant: 南开大学
Abstract: 一种用于锂硫二次电池正极复合材料的制备方法,包括下述步骤:1)将原硅酸乙酯经水解方法得到纳米SiO2球;2)将碳源溶液与纳米SiO2球混合后进行加热反应;3)将上述制得的产物经冷却、离心和烘干后进行煅烧碳化,制得SiO2-C核壳结构材料;4)用HF、NaOH或KOH溶液刻蚀SiO2-C核壳结构材料即可得到空心碳球材料;5)将硫与空心碳球材料研磨混合,放入充满Ar气的密封容器中,加热熔融灌注后即得S-C复合材料。本发明的积极效果是:1)该方法工艺简单;2)原材料价格低廉、易得,生产成本低;3)复合材料特有的核壳结构抑制了活性物质的流失并提高了材料的导电性能,显著改善了电极的电化学性能。
-
公开(公告)号:CN101867038A
公开(公告)日:2010-10-20
申请号:CN201010193869.4
申请日:2010-06-08
Applicant: 南开大学
Abstract: 一种用于锂硫二次电池正极复合材料的制备方法,包括下述步骤:1)将原硅酸乙酯经水解方法得到纳米SiO2球;2)将碳源溶液与纳米SiO2球混合后进行加热反应;3)将上述制得的产物经冷却、离心和烘干后进行煅烧碳化,制得SiO2-C核壳结构材料;4)用HF、NaOH或KOH溶液刻蚀SiO2-C核壳结构材料即可得到空心碳球材料;5)将硫与空心碳球材料研磨混合,放入充满Ar气的密封容器中,加热熔融灌注后即得S-C复合材料。本发明的积极效果是:1)该方法工艺简单;2)原材料价格低廉、易得,生产成本低;3)复合材料特有的核壳结构抑制了活性物质的流失并提高了材料的导电性能,显著改善了电极的电化学性能。
-
公开(公告)号:CN102035022B
公开(公告)日:2013-01-02
申请号:CN201010561063.6
申请日:2010-11-26
Applicant: 南开大学 , 台达电子工业股份有限公司
IPC: H01M10/0567 , H01M10/0569
Abstract: 一种用于电压为5V锂离子电池的电解液的制备方法,步骤如下:1)将砜和碳酸酯分别纯化除水后混合,得到混合溶剂;2)将锂盐溶解于上述混合溶剂中,得到不含添加剂的电解液;3)将添加剂溶解于上述不含添加剂的电解液中,所述添加剂为二氟草酸硼酸锂(LiDFOB),得到用于电压为5V锂离子电池的电解液。本发明的优点是:该电解液可以提高电解液与高电压正极的相容性,减少充电过程中电解液在高电压正极材料表面的分解,并可以在正负极表面形成稳定的SEI膜,使得正极材料的充放电容量及循环稳定性显著提高;而且工艺简单、易于实施、原料成本低廉、适于工业化生产,应用前景广阔。
-
公开(公告)号:CN102024989A
公开(公告)日:2011-04-20
申请号:CN201010561062.1
申请日:2010-11-26
Applicant: 南开大学 , 台达电子工业股份有限公司
IPC: H01M10/058 , H01M4/139 , H01M10/0567
Abstract: 一种高电压锂离子电池的制备方法,按锂离子电池的常规方法组装制备,正极材料为碳包覆正极复合材料LiCoPO4/C,负极材料为锂或碳,电解液为加入添加剂的常规有机电解液,所述添加剂为噻吩、联苯和呋喃中的一种或两种以上任意比例的组合,添加剂的质量百分比用量为常规有机电解液的0.05-2%。本发明的优点是:1)通过对高电压正极材料进行碳包覆,可在材料颗粒表面形成均匀的导电薄膜,有助于锂离子的嵌入与脱出;2)噻吩等添加剂的作用保证了电解液组分的稳定性。该方法工艺简单、易于工业化,通过正极材料的改性和电解液优化,离子电池的电化学性能有较大改善,在动力型锂离子电池领域中有广泛的应用前景。
-
公开(公告)号:CN102035022A
公开(公告)日:2011-04-27
申请号:CN201010561063.6
申请日:2010-11-26
Applicant: 南开大学 , 台达电子工业股份有限公司
IPC: H01M10/0567 , H01M10/0569
Abstract: 一种用于电压为5V锂离子电池的电解液的制备方法,步骤如下:1)将砜和碳酸酯分别纯化除水后混合,得到混合溶剂;2)将锂盐溶解于上述混合溶剂中,得到不含添加剂的电解液;3)将添加剂溶解于上述不含添加剂的电解液中,所述添加剂为二氟草酸硼酸锂(LiDFOB),得到用于电压为5V锂离子电池的电解液。本发明的优点是:该电解液可以提高电解液与高电压正极的相容性,减少充电过程中电解液在高电压正极材料表面的分解,并可以在正负极表面形成稳定的SEI膜,使得正极材料的充放电容量及循环稳定性显著提高;而且工艺简单、易于实施、原料成本低廉、适于工业化生产,应用前景广阔。
-
-
-
-