一种细粒度导向的小目标检测方法

    公开(公告)号:CN115587627A

    公开(公告)日:2023-01-10

    申请号:CN202211271767.9

    申请日:2022-10-18

    Applicant: 南开大学

    Abstract: 本发明提供了一种细粒度导向的小目标检测方法,包括以下步骤:预处理小目标检测数据集,利用滑动窗口对训练图像进行裁剪;根据标注框位置信息,生成分割分支伪标签;对裁剪后的小目标图像做数据增强,再分别输入特征提取网络模型;将输出的特征矩阵输入到小目标检测分支和分割分支;小目标检测分支和分割分支并行训练、独立优化;直至特征提取网络模型收敛,训练阶段结束;测试阶段,移除分割分支,分割分支不参与模型推理过程。本发明在网络训练过程中,新增分割分支,引导特征提取网络对于输入图像细粒度特征的学习,并设计分割分支伪标签,消除背景噪音的影响,且在不增加模型推理计算代价的前提下针对性地提高模型对小目标检测能力。

    一种基于协同监督的海面小行人检测方法

    公开(公告)号:CN114170633B

    公开(公告)日:2024-08-02

    申请号:CN202111478512.5

    申请日:2021-12-06

    Applicant: 南开大学

    Inventor: 盛晓颖 王恺 李涛

    Abstract: 本发明公开一种基于协同监督的海面小行人检测方法,包括以下步骤:预处理小行人检测数据集,划分为训练集和测试集;根据人工标注的目标包围框生成小行人中心点标签、中心点精度偏移标签以及中心点到包围框上下左右边界的垂直距离标签;在训练过程中,根据预测的中心点精度偏移,自适应地调整中心点到包围框垂直距离标签,促使检测框回归任务协同优化;前向传播计算三种标签对应的损失,以特定的权重进行融合;损失层梯度反向传播,更新网络模型中的参数,引导模型筛选行人显著特征。本发明根据预测中心点偏移量的变化,自适应地改变中心点到包围框垂直距离标签,有效地弥补中心点预测难度高带来的检测框回归偏差,提高了模型小行人检测的能力。

    一种基于协同监督的海面小行人检测方法

    公开(公告)号:CN114170633A

    公开(公告)日:2022-03-11

    申请号:CN202111478512.5

    申请日:2021-12-06

    Applicant: 南开大学

    Inventor: 盛晓颖 王恺 李涛

    Abstract: 本发明公开一种基于协同监督的海面小行人检测方法,包括以下步骤:预处理小行人检测数据集,划分为训练集和测试集;根据人工标注的目标包围框生成小行人中心点标签、中心点精度偏移标签以及中心点到包围框上下左右边界的垂直距离标签;在训练过程中,根据预测的中心点精度偏移,自适应地调整中心点到包围框垂直距离标签,促使检测框回归任务协同优化;前向传播计算三种标签对应的损失,以特定的权重进行融合;损失层梯度反向传播,更新网络模型中的参数,引导模型筛选行人显著特征。本发明根据预测中心点偏移量的变化,自适应地改变中心点到包围框垂直距离标签,有效地弥补中心点预测难度高带来的检测框回归偏差,提高了模型小行人检测的能力。

Patent Agency Ranking