-
公开(公告)号:CN110488410B
公开(公告)日:2024-07-16
申请号:CN201910848197.7
申请日:2019-09-09
Applicant: 南开大学
IPC: G02B6/02
Abstract: 本发明提供了一种通过微结构纤芯的等差分层设计,构建的太赫兹超高双折射光子晶体光纤。本发明采用以聚合物材料为基底的折射率引导型光子晶体光纤,光纤包层由三角晶格排列的圆形空气孔组成,纤芯微结构由三角晶格排列的椭圆空气孔组成,椭圆空气孔的尺寸采用等差分层设计,椭圆短轴长度随层数增加而增大。采用本发明所述方法设计的太赫兹光纤,模式双折射能够显著提高。在入射光频率为0.9THz时,光纤的模式双折射最大,达到4.07×10‑2。相比于晶格结构完全相同,纤芯微结构尺寸一致的光子晶体光纤,当入射光频率为0.5‑1.5THz时,光纤的模式双折射约提高3倍。对于通信、传感、测量等领域偏振器件的应用,本发明能够起到优化设计,显著提高器件性能的作用。
-
公开(公告)号:CN110501308B
公开(公告)日:2024-07-12
申请号:CN201910923078.3
申请日:2019-09-27
Applicant: 南开大学
IPC: G01N21/41
Abstract: 本发明提供了一种基于太赫兹微结构纤芯光子晶体光纤的宽带、超灵敏微流体传感器。器件采用双芯光子晶体光纤设计,由包层、左右两纤芯和涂覆层组成。光纤基底材料采用环烯烃类聚合物(TOPAS);包层为三角晶格排列,具有六方对称性的圆形空气孔阵列;左芯采用等差分层微结构,用于增大左芯的模式双折射,同时改变基模色散曲线的斜率;右芯由圆形空气孔内填充待测量液体形成。理论研究表明,在0.5‑1.5THz频率范围内,光纤都能够实现精确的折射率传感,器件可检测折射率变化范围为0.019。在1THz,器件的折射率灵敏度达到51.22THz/RIU,优于以往研究结果。本发明利用太赫兹波的宽带特性和双芯光纤基模的交点耦合效应,构建了一个宽带、超灵敏的微流体折射率传感器。在对于传感和测量有高精度要求的生物、化学、医药等领域有非常广阔的应用前景。
-
公开(公告)号:CN111399128B
公开(公告)日:2024-12-06
申请号:CN202010404695.5
申请日:2020-05-14
Applicant: 南开大学
Abstract: 本发明提供了一种基于磁流体填充的、太赫兹可调磁光波长选择开关。器件基本结构由两根互相靠近、纤芯具有不同微结构的多孔光纤1和2组成。光纤1是基于等差分层微结构、多孔度15.93%的高双折射多孔光纤,纤芯微结构基本单元为椭圆,椭圆尺寸从内层到外层逐渐增大;光纤2是多孔度44.81%的多孔光纤,纤芯微结构由三角晶格排列、大小一致的圆形空气孔组成。在光纤2内层空气孔填充磁流体,通过调节外磁场来改变磁流体的折射率,从而改变两光纤的模式匹配点,实现下行波长的动态可调。在0.8THz‑1.2THz,本发明所述磁光波长选择开关,能够实现单波下行连续可调选择。耦合长度小于16cm,吸收损耗小于0.02dB。
-
公开(公告)号:CN111399128A
公开(公告)日:2020-07-10
申请号:CN202010404695.5
申请日:2020-05-14
Applicant: 南开大学
Abstract: 本发明提供了一种基于磁流体填充的、太赫兹可调磁光波长选择开关。器件基本结构由两根互相靠近、纤芯具有不同微结构的多孔光纤1和2组成。光纤1是基于等差分层微结构、多孔度15.93%的高双折射多孔光纤,纤芯微结构基本单元为椭圆,椭圆尺寸从内层到外层逐渐增大;光纤2是多孔度44.81%的多孔光纤,纤芯微结构由三角晶格排列、大小一致的圆形空气孔组成。在光纤2内层空气孔填充磁流体,通过调节外磁场来改变磁流体的折射率,从而改变两光纤的模式匹配点,实现下行波长的动态可调。在0.8THz-1.2THz,本发明所述磁光波长选择开关,能够实现单波下行连续可调选择。耦合长度小于16cm,吸收损耗小于0.02dB。
-
公开(公告)号:CN110501308A
公开(公告)日:2019-11-26
申请号:CN201910923078.3
申请日:2019-09-27
Applicant: 南开大学
IPC: G01N21/41
Abstract: 本发明提供了一种基于太赫兹微结构纤芯光子晶体光纤的宽带、超灵敏微流体传感器。器件采用双芯光子晶体光纤设计,由包层、左右两纤芯和涂覆层组成。光纤基底材料采用环烯烃类聚合物(TOPAS);包层为三角晶格排列,具有六方对称性的圆形空气孔阵列;左芯采用等差分层微结构,用于增大左芯的模式双折射,同时改变基模色散曲线的斜率;右芯由圆形空气孔内填充待测量液体形成。理论研究表明,在0.5-1.5THz频率范围内,光纤都能够实现精确的折射率传感,器件可检测折射率变化范围为0.019。在1THz,器件的折射率灵敏度达到51.22THz/RIU,优于以往研究结果。本发明利用太赫兹波的宽带特性和双芯光纤基模的交点耦合效应,构建了一个宽带、超灵敏的微流体折射率传感器。在对于传感和测量有高精度要求的生物、化学、医药等领域有非常广阔的应用前景。
-
公开(公告)号:CN110488410A
公开(公告)日:2019-11-22
申请号:CN201910848197.7
申请日:2019-09-09
Applicant: 南开大学
IPC: G02B6/02
Abstract: 本发明提供了一种通过微结构纤芯的等差分层设计,构建的太赫兹超高双折射光子晶体光纤。本发明采用以聚合物材料为基底的折射率引导型光子晶体光纤,光纤包层由三角晶格排列的圆形空气孔组成,纤芯微结构由三角晶格排列的椭圆空气孔组成,椭圆空气孔的尺寸采用等差分层设计,椭圆短轴长度随层数增加而增大。采用本发明所述方法设计的太赫兹光纤,模式双折射能够显著提高。在入射光频率为0.9THz时,光纤的模式双折射最大,达到4.07×10-2。相比于晶格结构完全相同,纤芯微结构尺寸一致的光子晶体光纤,当入射光频率为0.5-1.5THz时,光纤的模式双折射约提高3倍。对于通信、传感、测量等领域偏振器件的应用,本发明能够起到优化设计,显著提高器件性能的作用。
-
公开(公告)号:CN213210536U
公开(公告)日:2021-05-14
申请号:CN202020792423.2
申请日:2020-05-14
Applicant: 南开大学
Abstract: 本实用新型提供了一种基于磁流体填充的、太赫兹可调磁光波长选择开关。器件基本结构由两根互相靠近、纤芯具有不同微结构的多孔光纤1和2组成。光纤1是基于等差分层微结构、多孔度15.93%的高双折射多孔光纤,纤芯微结构基本单元为椭圆,椭圆尺寸从内层到外层逐渐增大;光纤2是多孔度44.81%的多孔光纤,纤芯微结构由三角晶格排列、大小一致的圆形空气孔组成。在光纤2内层空气孔填充磁流体,通过调节外磁场来改变磁流体的折射率,从而改变两光纤的模式匹配点,实现下行波长的动态可调。在0.8THz‑1.2THz,本实用新型所述磁光波长选择开关,能够实现单波下行连续可调选择。耦合长度小于16cm,吸收损耗小于0.02dB。
-
公开(公告)号:CN211043721U
公开(公告)日:2020-07-17
申请号:CN201921490835.4
申请日:2019-09-09
Applicant: 南开大学
IPC: G02B6/02
Abstract: 本实用新型提供了一种通过微结构纤芯的等差分层设计,构建的太赫兹超高双折射光子晶体光纤。本实用新型采用以聚合物材料为基底的折射率引导型光子晶体光纤,光纤包层由三角晶格排列的圆形空气孔组成,纤芯微结构由三角晶格排列的椭圆空气孔组成,椭圆空气孔的尺寸采用等差分层设计,椭圆短轴长度随层数增加而增大。采用本实用新型所述方法设计的太赫兹光纤,模式双折射能够显著提高。在入射光频率为0.9THz时,光纤的模式双折射最大,达到4.07×10-2。相比于晶格结构完全相同,纤芯微结构尺寸一致的光子晶体光纤,当入射光频率为0.5-1.5THz时,光纤的模式双折射约提高3倍。对于通信、传感、测量等领域偏振器件的应用,本实用新型能够起到优化设计,显著提高器件性能的作用。(ESM)同样的发明创造已同日申请发明专利
-
公开(公告)号:CN211602925U
公开(公告)日:2020-09-29
申请号:CN201921626226.7
申请日:2019-09-27
Applicant: 南开大学
IPC: G01N21/41
Abstract: 本实用新型提供了一种太赫兹微结构双芯光纤超灵敏微流体传感器,其基本结构由涂覆层、包层和左右两纤芯组成,其特征是左芯为输入端口,右芯为输出端口,光纤横截面结构为在基底材料中设计若干空气孔,其中包层由大小一致的圆形空气孔组成,在左芯中设计满足等差分层条件的亚波长微空气孔阵列,右芯内填充待测微流体。本实用新型利用太赫兹波的宽带特性和双芯光纤的模耦合效应,构建了一个宽带、超灵敏的微流体折射率传感器。在生物、化学、医药等对传感和测量有高精度要求的领域,有广阔的应用前景。(ESM)同样的发明创造已同日申请发明专利
-
-
-
-
-
-
-
-