-
公开(公告)号:CN110969014A
公开(公告)日:2020-04-07
申请号:CN201911124188.X
申请日:2019-11-18
Applicant: 南开大学
IPC: G06F40/284 , G06F40/295 , G06F40/30 , G06N3/08
Abstract: 一种基于同步神经网络的意见二元组抽取方法。在细粒度情感分析领域,意见二元组抽取是一个重要任务,该任务旨在挖掘意见句中包含的评价对象、评价词、以及两者间的修饰关系。给定意见句,本发明方法首先基于预训练语言模型BERT构建编码层,学习词的上下文语义。随后,交替构建多个识别层与同步层,以实现评价对象、评价词、以及两者间关系的同步抽取。具体地,识别层包含意见实体抽取与关系检测两个模块,同步层设计了两个同步矩阵(即,边界同步矩阵与关系同步矩阵)来记录识别层学习到的高层语义信息,并传递给下一个识别层,以实现意见实体抽取与关系检测的相互促进。最后,本方法利用一个推理层,基于识别层的结果获取最终的意见二元组。
-
公开(公告)号:CN110969014B
公开(公告)日:2023-04-07
申请号:CN201911124188.X
申请日:2019-11-18
Applicant: 南开大学
IPC: G06F40/284 , G06F40/295 , G06F40/30 , G06N3/08
Abstract: 一种基于同步神经网络的意见二元组抽取方法。在细粒度情感分析领域,意见二元组抽取是一个重要任务,该任务旨在挖掘意见句中包含的评价对象、评价词、以及两者间的修饰关系。给定意见句,本发明方法首先基于预训练语言模型BERT构建编码层,学习词的上下文语义。随后,交替构建多个识别层与同步层,以实现评价对象、评价词、以及两者间关系的同步抽取。具体地,识别层包含意见实体抽取与关系检测两个模块,同步层设计了两个同步矩阵(即,边界同步矩阵与关系同步矩阵)来记录识别层学习到的高层语义信息,并传递给下一个识别层,以实现意见实体抽取与关系检测的相互促进。最后,本方法利用一个推理层,基于识别层的结果获取最终的意见二元组。
-