一种基于主题模型的多因素融合民航旅客出行预测方法

    公开(公告)号:CN106779214B

    公开(公告)日:2020-08-28

    申请号:CN201611159984.3

    申请日:2016-12-15

    Applicant: 南开大学

    Abstract: 一种基于主题模型的多因素融合民航旅客出行预测方法。本发明首先构建旅客之间的关联图,并针对旅客偏好进行主题建模,进而构建旅客关联图出行主题模型(Passenger Graph based Travel Topic Model,PGTTM),能够丰富主题信息、有效解决民航数据稀疏性问题;其次通过贝叶斯概率模型构建多因素融合预测框架,融合航线热度、PGTTM得到的旅客对航线偏好、旅客忠诚度和航空公司市场占有率信息,对旅客的未来出行进行精准预测。此发明能够有效预测旅客未来出行的航空公司和航线,可为航空及相关产业提供有效的决策支持,为旅客提供个性化服务。

    一种基于自适应Dropout非负矩阵分解的特征学习模型

    公开(公告)号:CN106779090B

    公开(公告)日:2019-03-08

    申请号:CN201611159985.8

    申请日:2016-12-15

    Applicant: 南开大学

    Abstract: 一种基于自适应Dropout非负矩阵分解的特征学习模型。本发明基于对NMF中隐藏特征之间关系的分析,提出一种基于自适应Dropout非负矩阵分解的特征学习模型(Adaptive Dropout Non‑negative Matrix Factorization),能够主动学习隐藏特征之间的相异度,并将其转化为隐藏特征的数据表示能力。然后在此基础上构造概率函数,并对隐藏特征进行Dropout,从而降低隐藏特征在优化过程中的相互影响,提高隐藏特征的语义独立性。本发明具有良好的可解释性和泛化性,能够在文本和图像数据上取得明显的性能提升,并能够应用到已有的基于NMF的算法中。此外,本发明还具有良好的可并行性,可以部署到并行平台上运行,用来处理大规模数据。

    一种基于条件随机场的缩略词扩展解释识别方法

    公开(公告)号:CN103778142A

    公开(公告)日:2014-05-07

    申请号:CN201210404108.8

    申请日:2012-10-23

    Applicant: 南开大学

    CPC classification number: G06N5/025 G06F17/2765

    Abstract: 本发明公开了一种基于条件随机场的缩略词扩展解释识别方法,涉及机器学习领域和缩略词识别任务。本发明将传统的缩略词与扩展解释对的识别任务建模成一个序列标记任务,并采用条件随机场这一结构化模型来识别缩略词的扩展解释。针对缩略词识别任务的具体特点,发明设计并抽取了三类特征,包括拼写特征、与缩略词的对应特征、上下文相关特征,并对模型进行了改进。所设计的模型考虑了缩略词扩展解释的上下文信息和结构信息,并具有潜在稀疏特征学习能力,发明进一步设计了多种特征函数及其组合方法,从而更好地从文本序列中识别出可能的扩展解释。

    基于多模态深度玻尔兹曼机的微博话题表示及主题发现方法

    公开(公告)号:CN106778880B

    公开(公告)日:2020-04-07

    申请号:CN201611203288.8

    申请日:2016-12-23

    Applicant: 南开大学

    Inventor: 刘杰 翟羽佳 王嫄

    Abstract: 基于多模态深度玻尔兹曼机的微博话题表示及主题发现方法。本发明通过对微博中话题标签进行分析,综合利用话题标签间共现信息及话题标签所在微博的向量空间表达这两种模态进行话题标签的表达建模。通过这两种信息得到的表达同时包含了话题标签本身相似性及所在微博的相似性。对话题标签的共现信息及微博的向量空间表达分别采用不同的深度玻尔兹曼机进行建模,最后将两个模态结果通过多模态的深度玻尔兹曼机进行联合学习,从而得到对联合两种模态的多模态表达。通过对得到的话题标签的多模态表达进行聚类,可将其中相似的话题标签聚到一起,从而提取出相应的微博主题。对于不含话题标签的微博,也可通过本模型生成话题标签,进而进行主题发现。

    一种基于主题模型的多因素融合民航旅客出行预测方法

    公开(公告)号:CN106779214A

    公开(公告)日:2017-05-31

    申请号:CN201611159984.3

    申请日:2016-12-15

    Applicant: 南开大学

    CPC classification number: G06Q10/04 G06Q50/30

    Abstract: 一种基于主题模型的多因素融合民航旅客出行预测方法。本发明首先构建旅客之间的关联图,并针对旅客偏好进行主题建模,进而构建旅客关联图出行主题模型(Passenger Graph based Travel Topic Model,PGTTM),能够丰富主题信息、有效解决民航数据稀疏性问题;其次通过贝叶斯概率模型构建多因素融合预测框架,融合航线热度、PGTTM得到的旅客对航线偏好、旅客忠诚度和航空公司市场占有率信息,对旅客的未来出行进行精准预测。此发明能够有效预测旅客未来出行的航空公司和航线,可为航空及相关产业提供有效的决策支持,为旅客提供个性化服务。

    基于多模态深度玻尔兹曼机的微博话题表示及主题发现方法

    公开(公告)号:CN106778880A

    公开(公告)日:2017-05-31

    申请号:CN201611203288.8

    申请日:2016-12-23

    Applicant: 南开大学

    Inventor: 刘杰 翟羽佳 王嫄

    Abstract: 基于多模态深度玻尔兹曼机的微博话题表示及主题发现方法。本发明通过对微博中话题标签进行分析,综合利用话题标签间共现信息及话题标签所在微博的向量空间表达这两种模态进行话题标签的表达建模。通过这两种信息得到的表达同时包含了话题标签本身相似性及所在微博的相似性。对话题标签的共现信息及微博的向量空间表达分别采用不同的深度玻尔兹曼机进行建模,最后将两个模态结果通过多模态的深度玻尔兹曼机进行联合学习,从而得到对联合两种模态的多模态表达。通过对得到的话题标签的多模态表达进行聚类,可将其中相似的话题标签聚到一起,从而提取出相应的微博主题。对于不含话题标签的微博,也可通过本模型生成话题标签,进而进行主题发现。

    一种基于停车场环境视频监控的车辆跟踪与检测方法

    公开(公告)号:CN103778785A

    公开(公告)日:2014-05-07

    申请号:CN201210403965.6

    申请日:2012-10-23

    Applicant: 南开大学

    Abstract: 本发明公开了一种基于停车场环境视频监控的车辆跟踪与检测方法,涉及模式识别领域,运动目标的检测、跟踪,视频监控问题。通过本发明,停车场环境的监控问题不但被更准确的获得,而且相对传统人工监控手段,本发明具有实时不间断监控的特点,而且引入了模式识别的算法的使用,通过对车辆目标的检测以及时间段内的各帧图像之间的关联分析等方式,获得了车辆的目标状态,进而得到停车场的环境状况,解决了停车场环境的智能监控问题。

    一种基于自适应Dropout非负矩阵分解的特征学习模型

    公开(公告)号:CN106779090A

    公开(公告)日:2017-05-31

    申请号:CN201611159985.8

    申请日:2016-12-15

    Applicant: 南开大学

    CPC classification number: G06N99/005

    Abstract: 一种基于自适应Dropout非负矩阵分解的特征学习模型。本发明基于对NMF中隐藏特征之间关系的分析,提出一种基于自适应Dropout非负矩阵分解的特征学习模型(Adaptive Dropout Non‑negative Matrix Factorization),能够主动学习隐藏特征之间的相异度,并将其转化为隐藏特征的数据表示能力。然后在此基础上构造概率函数,并对隐藏特征进行Dropout,从而降低隐藏特征在优化过程中的相互影响,提高隐藏特征的语义独立性。本发明具有良好的可解释性和泛化性,能够在文本和图像数据上取得明显的性能提升,并能够应用到已有的基于NMF的算法中。此外,本发明还具有良好的可并行性,可以部署到并行平台上运行,用来处理大规模数据。

    一种迁移学习框架下基于条件随机场的手势识别算法

    公开(公告)号:CN103778407A

    公开(公告)日:2014-05-07

    申请号:CN201210404068.7

    申请日:2012-10-23

    Applicant: 南开大学

    Abstract: 本发明公开了一种迁移学习框架下基于条件随机场的手势识别算法,涉及机器学习领域,序列数据的标注任务,手势识别问题。通过本发明,手势识别问题不但被更准确的识别,而且相对神经网络与条件随机场相结合的方法,具有更容易优化的特点,而且由于迁移学习框架的采用,通过无监督学习方法引入辅助任务与手势识别的主任务共享隐藏层特征的方式,解决了手势识别问题中有标注数据不足情况下的识别问题。

Patent Agency Ranking