基于PU学习的医疗设备性能指标异常检测方法和装置

    公开(公告)号:CN114202009A

    公开(公告)日:2022-03-18

    申请号:CN202111136341.8

    申请日:2021-09-27

    Applicant: 南开大学

    Abstract: 本申请提出了一种基于PU学习的医疗设备性能指标异常检测方法和装置,该方法包括:以历史关键性能指标KPI流为训练数据,将训练数据按照相似程度进行聚类,获取每个簇的质心曲线,并对每个簇的质心曲线进行标注,获取第一异常标注数据和第一无标注数据;基于第一异常标注数据和第一无标注数据,通过正例未标PU学习构建二进制分类器,并结合主动学习获取每个簇的质心曲线的异常标签和正常标签;获取待检测的KPI流对应的簇的质心曲线上的标签,通过半监督学习训练待检测的KPI流对应的异常检测模型,并通过异常检测模型检测待检测的KPI流。该方法在最大限度地减少标注工作量的同时,提升了医疗设备性能指标异常检测的准确性。

Patent Agency Ranking