-
公开(公告)号:CN102970044A
公开(公告)日:2013-03-13
申请号:CN201210480452.5
申请日:2012-11-23
Applicant: 南开大学
Abstract: 本发明公开了一种基于回溯的迭代重加权(Backtracking-based iterative reweighted least square,BIRLS)压缩传感重构算法。本发明通过在迭代重加权过程中加入回溯和稀疏度自适应的思想,算法在每一次迭代过程中将前次迭代得到的解向量支撑与迭代重加权产生的支撑合并,再通过回溯和自适应过程优化解向量支撑的选择。基于回溯的迭代重加权压缩传感重构算法能平衡所有系数对算法恢复效果的影响,且仅需要很少的迭代次数就能高概率恢复原始信号,大大减少重构所需的迭代时间,可较大程度提升对稀疏信号的恢复能力和重构精度。
-
公开(公告)号:CN102970044B
公开(公告)日:2017-10-27
申请号:CN201210480452.5
申请日:2012-11-23
Applicant: 南开大学
Abstract: 本发明公开了一种基于回溯的迭代重加权(Backtracking‑based iterative reweighted least square,BIRLS)压缩传感重构方法。本发明通过在迭代重加权过程中加入回溯和稀疏度自适应的思想,在每一次迭代过程中将前次迭代得到的解向量支撑与迭代重加权产生的支撑合并,再通过回溯和自适应过程优化解向量支撑的选择。基于回溯的迭代重加权压缩传感重构方法能平衡所有系数对恢复效果的影响,且仅需要很少的迭代次数就能高概率恢复原始信号,大大减少重构所需的迭代时间,可较大程度提升对稀疏信号的恢复能力和重构精度。
-