大规模低质量多模态无监督哈希方法及动态流数据检索系统

    公开(公告)号:CN119226344B

    公开(公告)日:2025-03-14

    申请号:CN202411339357.2

    申请日:2024-09-25

    Abstract: 本发明属于多模态信息处理领域,公开了大规模低质量多模态无监督哈希方法及动态流数据检索系统,为了充分挖掘大规模低质量多模态数据的强判别力哈希码,采取内层和外层组合的多层哈希码映射模式,构建了稀疏正则化多层哈希映射模型;为了融合低质量多模态数据中各种模态数据之间的独特特征内容和语义一致性特征内容,将不同模态映射对应的归约模态空间,并对各个归约模态空间内联耦合建模。本发明对上述申请方法进一步扩展到动态多模态流数据环境中,构建的动态流数据哈希函数求解器全局损失函数,能够逐步有序稳定的挖掘动态流数据语义信息,增强了低质量动态流数据哈希函数的学习判别力,实现对大规模低质量动态多模态流数据进行快速检索。

    大规模低质量多模态无监督哈希方法及动态流数据检索系统

    公开(公告)号:CN119226344A

    公开(公告)日:2024-12-31

    申请号:CN202411339357.2

    申请日:2024-09-25

    Abstract: 本发明属于多模态信息处理领域,公开了大规模低质量多模态无监督哈希方法及动态流数据检索系统,为了充分挖掘大规模低质量多模态数据的强判别力哈希码,采取内层和外层组合的多层哈希码映射模式,构建了稀疏正则化多层哈希映射模型;为了融合低质量多模态数据中各种模态数据之间的独特特征内容和语义一致性特征内容,将不同模态映射对应的归约模态空间,并对各个归约模态空间内联耦合建模。本发明对上述申请方法进一步扩展到动态多模态流数据环境中,构建的动态流数据哈希函数求解器全局损失函数,能够逐步有序稳定的挖掘动态流数据语义信息,增强了低质量动态流数据哈希函数的学习判别力,实现对大规模低质量动态多模态流数据进行快速检索。

Patent Agency Ranking