-
公开(公告)号:CN110414388B
公开(公告)日:2022-09-06
申请号:CN201910630633.3
申请日:2019-07-12
Applicant: 南京理工大学
Abstract: 本发明公开了一种基于深度预测网络的驼峰和熔透预警方法,将熔池图像样本数据输入构建的驼峰和熔透预警模型,利用反向传播算法更新驼峰和熔透预警模型网络参数,直至损失函数值变化量小于设定阈值,选取此时训练的模型参数作为该模型的网络参数;将实时采集的熔池图像输入训练好的驼峰和熔透预警模型得到五十帧之后的熔池图像是否为驼峰或熔透。本发明采用基于深度预测网络的驼峰和熔透预警模型,能够实时预测熔池形态的变化以判断焊接过程是否有产生驼峰或熔透的趋势。
-
公开(公告)号:CN110414388A
公开(公告)日:2019-11-05
申请号:CN201910630633.3
申请日:2019-07-12
Applicant: 南京理工大学
Abstract: 本发明公开了一种基于深度预测网络的驼峰和熔透预警方法,将熔池图像样本数据输入构建的驼峰和熔透预警模型,利用反向传播算法更新驼峰和熔透预警模型网络参数,直至损失函数值变化量小于设定阈值,选取此时训练的模型参数作为该模型的网络参数;将实时采集的熔池图像输入训练好的驼峰和熔透预警模型得到五十帧之后的熔池图像是否为驼峰或熔透。本发明采用基于深度预测网络的驼峰和熔透预警模型,能够实时预测熔池形态的变化以判断焊接过程是否有产生驼峰或熔透的趋势。
-