-
公开(公告)号:CN113256800B
公开(公告)日:2021-11-26
申请号:CN202110646148.2
申请日:2021-06-10
Applicant: 南京理工大学
Abstract: 本发明涉及一种基于深度学习的精确快速大景深三维重建方法,属于计算机智能视觉技术领域。包括如下步骤:基于深度学习设计搭建景深拓展卷积神经网络,通过三维测量系统采集待测物体的原始条纹图片,再获取高精度包裹相位,并以此重建三维信息。本发明提出的方法利用设备在固定的焦距下所拍摄的三张不同相移的条纹图像,即可在较大的测量景深内获得高精度的包裹相位。在这一过程中,投影仪和相机所引起的测量误差可被明显降低,仅通过单次拍摄即可在大景深场景下实现高性能的三维重建。
-
公开(公告)号:CN113256800A
公开(公告)日:2021-08-13
申请号:CN202110646148.2
申请日:2021-06-10
Applicant: 南京理工大学
Abstract: 本发明涉及一种基于深度学习的精确快速大景深三维重建方法,属于计算机智能视觉技术领域。包括如下步骤:基于深度学习设计搭建景深拓展卷积神经网络,通过三维测量系统采集待测物体的原始条纹图片,再获取高精度包裹相位,并以此重建三维信息。本发明提出的方法利用设备在固定的焦距下所拍摄的三张不同相移的条纹图像,即可在较大的测量景深内获得高精度的包裹相位。在这一过程中,投影仪和相机所引起的测量误差可被明显降低,仅通过单次拍摄即可在大景深场景下实现高性能的三维重建。
-