-
公开(公告)号:CN112287571B
公开(公告)日:2021-05-14
申请号:CN202011617450.7
申请日:2020-12-31
Applicant: 南京理工大学
Abstract: 本发明涉及一种基于物理驱动的散射泛化成像方法和实验方法,属于成像分析技术领域,散射泛化成像方法,包括搭建的物理/数据模型,利用相机采集到的散斑图案,并利用散斑相关理论可作为具有普适性的物理原理来约束和指导神经网络在不同散射场景中进行泛化成像。该实验方法包括理论分析和系统实验,在搭建具体的系统实验对本方法进行系统地论述。提高泛化能力和泛化质量,以及泛化更复杂的目标等。将基于散斑相关的物理模型与深度学习的数据模型进行有机结合而大大提高神经网络模型散射泛化成像效果和成像范围。
-
公开(公告)号:CN115631253A
公开(公告)日:2023-01-20
申请号:CN202211659809.6
申请日:2022-12-23
Applicant: 南京理工大学
Abstract: 本发明公开了一种基于物理驱动深度学习的光纤无透镜泛化成像方法,包括如下步骤:采集散斑图案,将采集到的散斑数据进行图像去噪,利用散斑的冗余性选择散斑的中心区域和其周围上、下、左、右偏移量为若干个像素,共5个子区域散斑图进行作为训练数据集,将训练数据集中的散斑进行自相关运算,并将自相关图像输入神经网络中进行重建,本发明的有益效果:有效解决了实际内窥镜场景中,各种目标的泛化重建问题,为多芯光纤内窥镜的实际应用提供了一个有效的帮助。
-
公开(公告)号:CN113920297B
公开(公告)日:2022-03-18
申请号:CN202111519123.2
申请日:2021-12-14
Applicant: 南京理工大学
Abstract: 本发明公开一种基于物理驱动的神经网络透过散射介质的彩色泛化成像方法,包括建立一个物理模型与神经网络模型互驱动的神经网络、建立一个用于采集实验图像数据的系统配置,将采集到的图像数据经过预处理后送进神经网络进行图像复原重建。本发明将基于散斑相关和散斑冗余性物理先验和多通道卷积神经网络强大的数据挖掘和映射能力的有效结合,仅利用一块介质的散斑数据即可实现透过未知散射介质的多光谱复杂目标等情况下,实现对目标的高质量恢复,有力地推动了物理感知学习方法在实际散射场景中的成像泛化成像。该方法更加充分的利用了散斑的原始信息,对实际散射场景复杂多变、目标信息特性复杂和数据难以充分获取任务。
-
公开(公告)号:CN113920297A
公开(公告)日:2022-01-11
申请号:CN202111519123.2
申请日:2021-12-14
Applicant: 南京理工大学
Abstract: 本发明公开一种基于物理驱动的神经网络透过散射介质的彩色泛化成像方法,包括建立一个物理模型与神经网络模型互驱动的神经网络、建立一个用于采集实验图像数据的系统配置,将采集到的图像数据经过预处理后送进神经网络进行图像复原重建。本发明将基于散斑相关和散斑冗余性物理先验和多通道卷积神经网络强大的数据挖掘和映射能力的有效结合,仅利用一块介质的散斑数据即可实现透过未知散射介质的多光谱复杂目标等情况下,实现对目标的高质量恢复,有力地推动了物理感知学习方法在实际散射场景中的成像泛化成像。该方法更加充分的利用了散斑的原始信息,对实际散射场景复杂多变、目标信息特性复杂和数据难以充分获取任务。
-
公开(公告)号:CN112287571A
公开(公告)日:2021-01-29
申请号:CN202011617450.7
申请日:2020-12-31
Applicant: 南京理工大学
Abstract: 本发明涉及一种基于物理驱动的散射泛化成像方法和实验方法,属于成像分析技术领域,散射泛化成像方法,包括搭建的物理/数据模型,利用相机采集到的散斑图案,并利用散斑相关理论可作为具有普适性的物理原理来约束和指导神经网络在不同散射场景中进行泛化成像。该实验方法包括理论分析和系统实验,在搭建具体的系统实验对本方法进行系统地论述。提高泛化能力和泛化质量,以及泛化更复杂的目标等。将基于散斑相关的物理模型与深度学习的数据模型进行有机结合而大大提高神经网络模型散射泛化成像效果和成像范围。
-
-
-
-