-
公开(公告)号:CN117290810B
公开(公告)日:2024-02-02
申请号:CN202311584724.0
申请日:2023-11-27
Applicant: 南京气象科技创新研究院
IPC: G06F18/25 , G01W1/10 , G06F18/241 , G06N3/0464 , G06N3/044 , G06N3/045 , G06N3/08
Abstract: 明可以大幅提升对短时强降水的概率预测能力。本发明公开了一种基于循环卷积神经网络的短时强降水概率预报融合方法,涉及大气科学研究领域,包括如下步骤:步骤一、建立降水短时预测的融合数据集,并将融合数据集划分为降水短时预测训练集、验证集和测试集;步骤二、使用步骤一中的降水短时预测训练集和验证集,训练出基于循环卷积神经网络的降水时序预测模型;采用训练出的基于循环卷积神经网络的降水时序预测模型,获取未来6‑18小时的小时降水量时空预报结果;步骤三、采用步骤二中得到的降水(56)对比文件庄潇然 等.基于深度学习的融合降水临近预报方法及其在中国东部地区的应用研究 《.气象学报》.2023,286-303.郑玉 等.基于循环神经网络改进雷达定量估测强降水《.中国科技论文》.2020,第15卷(第5期),585-592.WU Zhi-peng 等.A COMBINEDVERIFICATION METHOD FOR PREDICTABILITY OFPERSISTENT HEAVY RAINFALL EVENTS OVEREAST ASIA BASED ON ENSEMBLE FORECAST.《JOURNAL OF TROPICAL METEOROLOGY》.2020,1-12.Xiaoran Zhuang 等.SpatialPredictability of Heavy Rainfall Eventsin East China and the Application ofSpatial-Based Methods of ProbabilisticForecasting《.atmosphere》.2019,1-19.Angelica N. Caseri 等.A convolutionalrecurrent neural network for strongconvective rainfall nowcasting usingweather radar data in SoutheasternBrazil《.Artificial Intelligence inGeosciences》.2022,1-6.
-
公开(公告)号:CN117290810A
公开(公告)日:2023-12-26
申请号:CN202311584724.0
申请日:2023-11-27
Applicant: 南京气象科技创新研究院
IPC: G06F18/25 , G01W1/10 , G06F18/241 , G06N3/0464 , G06N3/044 , G06N3/045 , G06N3/08
Abstract: 本发明公开了一种基于循环卷积神经网络的短时强降水概率预报融合方法,涉及大气科学研究领域,包括如下步骤:步骤一、建立降水短时预测的融合数据集,并将融合数据集划分为降水短时预测训练集、验证集和测试集;步骤二、使用步骤一中的降水短时预测训练集和验证集,训练出基于循环卷积神经网络的降水时序预测模型;采用训练出的基于循环卷积神经网络的降水时序预测模型,获取未来6‑18小时的小时降水量时空预报结果;步骤三、采用步骤二中得到的降水时空预测结果,对LightGBM分类模型进行训练,得到短时强降水分类模型,获取未来6‑18小时的逐小时的短时强降水事件的概率预测结果。本发明可以大幅提升对短时强降水的概率预测能力。
-