-
公开(公告)号:CN107129599B
公开(公告)日:2019-09-10
申请号:CN201710491513.0
申请日:2017-06-20
Applicant: 南京林业大学
Abstract: 本发明公开一种纳米纤维素模板制备膨胀型阻燃剂的方法。将纳米纤维素原料分散至去离子水中,超声分散至均匀,调节纳米纤维素胶体pH值至中性。在纳米纤维素胶体中加入含氮化合物乙二胺、尿素,充分搅拌,然后加入含磷化合物磷酸二乙酯、磷酸二氢铵,充分搅拌,制备得到含磷含氮的膨胀型阻燃剂。本发明制备的膨胀型阻燃剂集炭源、酸源、气源于一体,具有良好的阻燃性能。对木塑复合材料进行处理后极限氧指数提高了25~42%。合成过程中绿色环保、操作简便。
-
公开(公告)号:CN108752711A
公开(公告)日:2018-11-06
申请号:CN201810648238.3
申请日:2018-06-21
Applicant: 南京林业大学
CPC classification number: C08L23/06 , C08L2201/02 , C08L2207/062 , C08L1/02 , C08K3/32
Abstract: 本发明公开一种同步阻燃增强高密度聚乙烯的制备方法,属于高密度聚乙烯(HDPE)领域。所述同步阻燃增强高密度聚乙烯的制备方法,是将纤维原料经磷酸酸解、超声破碎一段时间,然后加入胺类物质进行中和,制成含聚磷酸盐的微纳米纤维素胶体,将制得的含聚磷酸盐的微纳米纤维素胶体与HDPE混和,得到共混物;然后将上述共混物进行真空干燥,熔融共混,经挤塑造粒,制成阻燃增强高密度聚乙烯。借助微纳米纤维素的增强效应和体系的阻燃效应,同步赋予HDPE阻燃增强特性。与纯的HDPE相比,复合材料的刚度增加了24%,极限氧指数增加了28%。该方法还解决了酸处理微纳米纤维素后续的脱酸处理,易于工业化。
-
公开(公告)号:CN107129599A
公开(公告)日:2017-09-05
申请号:CN201710491513.0
申请日:2017-06-20
Applicant: 南京林业大学
Abstract: 本发明公开一种纳米纤维素模板制备膨胀型阻燃剂的方法。将纳米纤维素原料分散至去离子水中,超声分散至均匀,调节纳米纤维素胶体pH值至中性。在纳米纤维素胶体中加入含氮化合物乙二胺、尿素,充分搅拌,然后加入含磷化合物磷酸二乙酯、磷酸二氢铵,充分搅拌,制备得到含磷含氮的膨胀型阻燃剂。本发明制备的膨胀型阻燃剂集炭源、酸源、气源于一体,具有良好的阻燃性能。对木塑复合材料进行处理后极限氧指数提高了25~42%。合成过程中绿色环保、操作简便。
-
公开(公告)号:CN106752055A
公开(公告)日:2017-05-31
申请号:CN201710017230.2
申请日:2017-01-05
Applicant: 南京林业大学
CPC classification number: C08L101/00 , C08K2201/011 , C08L2201/02 , C08L2205/03 , C08L97/02 , C08L1/02 , C08K9/10 , C08K9/08 , C08K2003/323 , C08K3/36
Abstract: 本发明公开一种层层自组装阻燃木塑复合材料的制备方法。首先将纳米晶态纤维素、聚磷酸铵、纳米二氧化硅制成阴阳聚电解质水溶液,然后采用层层自组装依次将纳米晶态纤维素、聚磷酸铵、纳米二氧化硅聚电解质喷涂至植物纤维和塑料预混物的表面,然后将自组装后的预混物干燥、塑炼、成型和冷却,制备得到阻燃木塑复合材料。性能测试显示,木塑复合材料的氧指数为24.2~30.1%,平均热释放速率为85.3~105kW/m2。本发明所获得的木塑复合材料阻燃性能优异,制备方法简单。
-
公开(公告)号:CN106752055B
公开(公告)日:2019-04-12
申请号:CN201710017230.2
申请日:2017-01-05
Applicant: 南京林业大学
Abstract: 本发明公开一种层层自组装阻燃木塑复合材料的制备方法。首先将纳米晶态纤维素、聚磷酸铵、纳米二氧化硅制成阴阳聚电解质水溶液,然后采用层层自组装依次将纳米晶态纤维素、聚磷酸铵、纳米二氧化硅聚电解质喷涂至植物纤维和塑料预混物的表面,然后将自组装后的预混物干燥、塑炼、成型和冷却,制备得到阻燃木塑复合材料。性能测试显示,木塑复合材料的氧指数为24.2~30.1%,平均热释放速率为85.3~105kW/m2。本发明所获得的木塑复合材料阻燃性能优异,制备方法简单。
-
-
-
-