-
公开(公告)号:CN105778549B
公开(公告)日:2018-06-08
申请号:CN201610186184.4
申请日:2016-03-25
Applicant: 南京林业大学
Abstract: 本发明涉及一种酒石酸铁钠和甘油屏蔽木粉羟基制备注塑级生物基塑料的方法,属于生物基塑料开发领域。目的是为了提供一种工艺简单、生产成本低、易实现产业化的生物质塑料的制备方法。取木质纤维原料粉碎,然后用球磨机对原料进行球磨得粉料,球磨时间为4‑15h。在配制有酒石酸铁钠溶液的容器中加入经球磨预处理的木质纤维粉料,经冰箱1‑5℃低温润胀后放入内腔温度为30‑80℃的捏合机中捏合3‑6h,烘干制得具有一定热塑性的初始样品,在初始样品中加入质量分数为5‑40%的甘油,在温度为50‑140℃,转速为30‑110r/min的条件下在双螺旋挤出机中循环5‑60min,然后挤出得到注塑级的生物基塑料。本发明工艺简单,资源利用率高,得到的产品具有力学性能佳,绿色环保,可生物降解等优点。
-
公开(公告)号:CN106279763A
公开(公告)日:2017-01-04
申请号:CN201610652279.0
申请日:2016-08-10
Applicant: 南京林业大学
IPC: C08K3/22 , C08L1/04 , C02F1/30 , C02F101/34
CPC classification number: C08K3/22 , C02F1/30 , C02F2101/345 , C02F2305/10 , C08K2201/011 , C08L1/04
Abstract: 本发明公开了一种基于NaOH/尿素溶液的纳米ZnO纤维素复合材料的水热制备方法及应用,该方法为:在NaOH/尿素的纤维素溶液中,采用水热法原位复合制备获得纳米ZnO纤维素复合材料。本发明的基于NaOH/尿素溶液的纳米ZnO纤维素复合材料的水热制备方法,纤维素溶解后,其分子上的羟基与锌离子结合,克服了锌源不易渗透进入载体的缺点,且所用溶剂NaOH/尿素价廉易得,水热合成温度明显降低。所述纳米ZnO纤维素复合材料含有 47.5% ZnO;对光降解废水中的苯酚具有较高的去除效率,本发明制备的ZnO纤维素复合材料,廉价环保,作为光降解催化剂,在苯酚废水的处理方面,具有很好的实用性。
-
公开(公告)号:CN102964605B
公开(公告)日:2015-02-18
申请号:CN201210503125.7
申请日:2012-11-30
Applicant: 南京林业大学
IPC: C08H8/00
Abstract: 本发明公开了一种木质纤维类生物质的酯化改性方法,包括:先对木质纤维类生物质进行干燥和粉碎预处理;然后进行预球磨;接着加入酯化试剂,继续球磨进行酯化改性反应;反应结束后,将产物洗涤,干燥,即得到木质纤维类生物质的酯化改性产物。该方法以各种木质纤维类生物质为原料,来源广泛且成本低廉,资源利用率高,改变单一改性纤维素的传统模式;采取在球磨过程中对木质纤维类生物质酯化方式,无需在溶解后的均相体系或溶剂为分散介质的非均相体系中进行酯化反应,改性工艺简单,环境友好,无“三废”产生,并且不需要回收溶剂。通过红外和称重法结果表明产物酯化效果好,具有很好的实用性和较好的经济前景。
-
公开(公告)号:CN103773054A
公开(公告)日:2014-05-07
申请号:CN201310727553.2
申请日:2013-12-26
Applicant: 南京林业大学
Abstract: 本发明公开了一种制备木质纤维类生物基塑料的方法,包括:先对木质纤维类生物质进行干燥和粉碎预处理;然后进行球磨预处理;然后将球磨后的木质纤维原料与离子液体/二甲基亚砜或季铵盐/二甲基亚砜溶液混合;接着放入捏合机中捏合;捏合过程中回收二甲基亚砜,捏合结束后,即可得到木质纤维类生物基塑料。该方法原料来源广泛且成本低廉,资源利用率高,通过预球磨破坏木质素的三维立体网状结构,较大幅度地提高试剂的可及度,避免使用大量强腐蚀试剂和溶剂;利用捏合机强大的剪切力,使季铵盐或离子液体能够渗透到纤维素分子链之间,且使用的离子液体量少,产物可挤出造粒并注塑成型;环境友好,工艺简单易操作。
-
公开(公告)号:CN109939745A
公开(公告)日:2019-06-28
申请号:CN201910321660.2
申请日:2019-04-22
Applicant: 南京林业大学
IPC: B01J31/38 , B01J37/10 , C02F1/30 , C02F101/30
Abstract: 本发明公开了一种纳米二氧化钛/木粉复合材料及其制备方法和应用,属于纳米复合材料技术领域。该纳米二氧化钛/木粉复合材料由二氧化钛与胡桑枝条木粉复合而成,其中,胡桑枝条木粉为载体,二氧化钛以纳米颗粒的形式分散在木粉表面。本发明制备方法简单,所用溶剂NaOH/尿素价廉易得,设备简单易行;制备的纳米二氧化钛/木粉复合材料含有43%左右的TiO2;对光降解染料废水中亚甲基蓝的去除效率达到97%;本发明制备的二氧化钛/木粉复合材料,廉价环保,在作为光降解催化剂和亚甲基蓝废水的处理方面,具有很好的实用性。
-
公开(公告)号:CN106751612A
公开(公告)日:2017-05-31
申请号:CN201611149393.8
申请日:2016-12-09
Applicant: 南京林业大学
Abstract: 本发明属于高分子材料技术领域。本发明公开了微晶纤维素与聚乳酸的共混物材料,所述的共混物中微晶纤维素质量含量为0.1~99.9%、以浓度为30~100%的N‑甲基吗啉N氧化物(NMMO)水溶液为溶剂,将微晶纤维素和聚乳酸加入NMMO溶剂中,加热至20~150℃后恒温0.1~100小时,微晶纤维素和聚乳酸完全溶解,制备和聚乳酸混合溶液。将该混合溶液的成型产物经沉淀剂沉淀,所得的共混物经造粒并真空干燥后,得到微晶纤维素与聚乳酸共混物材料。所述的聚乳酸可以为均聚物、共聚物或其共混物。
-
公开(公告)号:CN106362799A
公开(公告)日:2017-02-01
申请号:CN201610651363.0
申请日:2016-08-10
Applicant: 南京林业大学
CPC classification number: B01J31/26 , B01J35/004 , C02F1/30 , C02F2101/308 , C02F2305/10
Abstract: 本发明公开了一种基于NaOH/尿素溶液的直接沉淀法制备纳米ZnO纤维素复合材料的方法及应用,在NaOH/尿素的纤维素溶液中,采用直接沉淀法原位复合制备纳米ZnO纤维素复合材料。该基于NaOH/尿素溶液的直接沉淀法制备纳米ZnO纤维素复合材料的方法,纤维素溶解后,其分子上的羟基与锌离子结合,有利于ZnO均匀分布在纤维素中,方法简单,所用溶剂NaOH/尿素价廉易得,设备简单易行。所述纳米ZnO纤维素复合材料含有57 % ZnO;对光降解染料废水中的亚甲蓝具有较高的去除效率,本发明制备的ZnO纤维素复合材料,廉价环保,作为光降解催化剂,在亚甲蓝废水的处理方面,具有很好的实用性。
-
公开(公告)号:CN105385125A
公开(公告)日:2016-03-09
申请号:CN201510916154.X
申请日:2015-12-09
Applicant: 南京林业大学
IPC: C08L67/04 , C08K5/1545 , C08J3/205
CPC classification number: C08K5/1545 , C08J3/205 , C08J2367/04 , C08L2201/06 , C08L67/04
Abstract: 本发明公开了纤维二糖改性聚乳酸的共混物材料,所述的共混物中聚乳酸的质量含量为99.9~0.1%、纤维二糖质量含量为0.1~99.9%。以纤维二糖、聚乳酸为原料,以二甲基亚砜(DMSO)、N,N-二甲基乙酰胺(DMAc)为溶剂,在20~150℃恒温至纤维二糖、聚乳酸完全溶解,制备聚乳酸/纤维二糖共混溶液。将该混合溶液在20~150℃真空干燥,完全脱除溶剂,得到纤维二糖与聚乳酸共混物。该共混物经挤出造粒后,得到聚乳酸/纤维二糖共混物材料。所述的聚乳酸可以为L-乳酸、D-乳酸的均聚物、共聚物或其共混物。
-
公开(公告)号:CN104941537A
公开(公告)日:2015-09-30
申请号:CN201510280739.7
申请日:2015-05-28
Applicant: 南京林业大学
Abstract: 本发明公开了一种条状纳米ZnO/纤维素凝胶材料的制备方法,以ZnCl2水溶液作为纤维素的溶剂和纳米ZnO的锌源,溶解浆纤维素纤维为纤维素原料,通过溶解、注射共析出、水热合成和冷冻干燥,制备出条状纳米ZnO/纤维素凝胶新材料。本发明巧妙地以ZnCl2水溶液作为纤维素的溶剂和纳米ZnO的锌源,因此,无需外加其他纤维素溶剂,制备工艺清洁环保。另外,纤维素溶解后,其分子上的羟基与锌离子结合,促进了纳米ZnO的生成,水热合成温度也相应明显降低,因此,制备工艺具有节能的优点。
-
公开(公告)号:CN102924608A
公开(公告)日:2013-02-13
申请号:CN201210501520.1
申请日:2012-11-30
Applicant: 南京林业大学
Abstract: 本发明公开了一种制备木质纤维类生物质低降解乙酰化产品的方法,在温和的反应条件下,采用多步法对原料各组分进行低降解的乙酰化改性。包括:将木质纤维原料去皮、粉碎、烘干,在温和的反应条件下对原料进行乙酰化改性;反应结束后,将产物液固分离,上层液中加水得到析出物,下层固体在反应釜中继续反应,反应结束后按前述操作处理;每步得到的下层固体经多次反应;收集每步得到的析出物,洗涤后烘干得到乙酰化产品。该方法乙酰化改性条件温和,减少了产物的降解,反应试剂毒性及污染程度低,所得产物具有较好的环境友好性、热稳定性以及热塑性,且易溶于有机溶剂,对于木质纤维改性制备热塑性高分子结构材料或功能材料具有重要的意义。
-
-
-
-
-
-
-
-
-